The research at MCML in Medicine and Healthcare focus on objectives that are necessary to overcome the hurdles for the deployment of ML approaches in clinical environments. In particular, advances are required in interpretable and explainable deep learning, robust and data efficient learning, privacy preserving learning, as well as in trust and safety of autonomous AI and ML systems.
Controllable text-to-image (T2I) diffusion models have shown impressive performance in generating high-quality visual content through the incorporation of various conditions. Current methods, however, exhibit limited performance when guided by skeleton human poses, especially in complex pose conditions such as side or rear perspectives of human figures. To address this issue, we present Stable-Pose, a novel adapter model that introduces a coarse-to-fine attention masking strategy into a vision Transformer (ViT) to gain accurate pose guidance for T2I models. Stable-Pose is designed to adeptly handle pose conditions within pre-trained Stable Diffusion, providing a refined and efficient way of aligning pose representation during image synthesis. We leverage the query-key self-attention mechanism of ViTs to explore the interconnections among different anatomical parts in human pose skeletons. Masked pose images are used to smoothly refine the attention maps based on target pose-related features in a hierarchical manner, transitioning from coarse to fine levels. Additionally, our loss function is formulated to allocate increased emphasis to the pose region, thereby augmenting the model’s precision in capturing intricate pose details. We assessed the performance of Stable-Pose across five public datasets under a wide range of indoor and outdoor human pose scenarios. Stable-Pose achieved an AP score of 57.1 in the LAION-Human dataset, marking around 13% improvement over the established technique ControlNet.
Registering pre-operative modalities, such as magnetic resonance imaging or computed tomography, to ultrasound images is crucial for guiding clinicians during surgeries and biopsies. Recently, deep-learning approaches have been proposed to increase the speed and accuracy of this registration problem. However, all of these approaches need expensive supervision from the ultrasound domain. In this work, we propose a multitask generative framework that needs weak supervision only from the pre-operative imaging domain during training. To perform a deformable registration, the proposed framework translates a magnetic resonance image to the ultrasound domain while preserving the structural content. To demonstrate the efficacy of the proposed method, we tackle the registration problem of pre-operative 3D MR to transrectal ultrasonography images as necessary for targeted prostate biopsies. We use an in-house dataset of 600 patients, divided into 540 for training, 30 for validation, and the remaining for testing. An expert manually segmented the prostate in both modalities for validation and test sets to assess the performance of our framework. The proposed framework achieves a 3.58 mm target registration error on the expert-selected landmarks, 89.2% in the Dice score, and 1.81 mm 95th percentile Hausdorff distance on the prostate masks in the test set. Our experiments demonstrate that the proposed generative model successfully translates magnetic resonance images into the ultrasound domain. The translated image contains the structural content and fine details due to an ultrasound-specific two-path design of the generative model. The proposed framework enables training learning-based registration methods while only weak supervision from the pre-operative domain is available.
This study investigates the predictive capability of radiomics in determining programmed cell death ligand 1 (PD-L1) expression (>=1%) status in non-small cell lung cancer (NSCLC) patients using a newly collected [18F]FDG PET/CT dataset. We aimed to replicate and validate the radiomics-based machine learning (ML) model proposed by Zhao et al. [2] predicting PD-L1 status from PET/CT-imaging.
An independent cohort of 254 NSCLC patients underwent [18F]FDG PET/CT imaging, with primary tumor segmentation conducted using lung tissue window (LTW) and more conservative soft tissue window (STW) methods. Radiomics models (“Rad-score” and “complex model”) and a clinical-stage model from Zhao et al. were evaluated via 10-fold cross-validation and AUC analysis, alongside a benchmark-study comparing different ML-model pipelines. Clinicopathological data were collected from medical records.
On our data, the Rad-score model yielded mean AUCs of 0.593 (STW) and 0.573 (LTW), below Zhao et al.’s 0.761. The complex model achieved mean AUCs of 0.505 (STW) and 0.519 (LTW), lower than Zhao et al.’s 0.769. The clinical model showed a mean AUC of 0.555, below Zhao et al.’s 0.64. All models performed significantly lower than Zhao et al.’s findings. Our benchmark study on four ML pipelines revealed consistently low performance across all configurations.
Our study failed to replicate original findings, suggesting poor model performance and questioning predictive value of radiomics features in classifying PD-L1 expression from PET/CT imaging. These results highlight challenges in replicating radiomics-based ML models and stress the need for rigorous validation
Meningeal lymphatic vessels (MLVs) are responsible for the drainage of waste products from the human brain. An impairment in their functionality has been associated with aging as well as brain disorders like multiple sclerosis and Alzheimer’s disease. However, MLVs have only recently been described for the first time in magnetic resonance imaging (MRI), and their ramified structure renders manual segmentation particularly difficult. Further, as there is no consistent notion of their appearance, human-annotated MLV structures contain a high inter-rater variability that most automatic segmentation methods cannot take into account. In this work, we propose a new rater-aware training scheme for the popular nnU-Net model, and we explore rater-based ensembling strategies for accurate and consistent segmentation of MLVs. This enables us to boost nnU-Net’s performance while obtaining explicit predictions in different annotation styles and a rater-based uncertainty estimation. Our final model, MLV2-Net, achieves a Dice similarity coefficient of 0.806 with respect to the human reference standard. The model further matches the human inter-rater reliability and replicates age-related associations with MLV volume.
Topological correctness plays a critical role in many image segmentation tasks, yet most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy. Existing topology-aware methods often lack robust topological guarantees, are limited to specific use cases, or impose high computational costs. In this work, we propose a novel, graph-based framework for topologically accurate image segmentation that is both computationally efficient and generally applicable. Our method constructs a component graph that fully encodes the topological information of both the prediction and ground truth, allowing us to efficiently identify topologically critical regions and aggregate a loss based on local neighborhood information. Furthermore, we introduce a strict topological metric capturing the homotopy equivalence between the union and intersection of prediction-label pairs. We formally prove the topological guarantees of our approach and empirically validate its effectiveness on binary and multi-class datasets. Our loss demonstrates state-of-the-art performance with up to fivefold faster loss computation compared to persistent homology methods.
Employing pre-trained Large Language Models (LLMs) has become the de facto standard in Natural Language Processing (NLP) despite their extensive data requirements. Motivated by the recent surge in research focused on training LLMs with limited data, particularly in low-resource domains and languages, this paper surveys recent transfer learning approaches to optimize model performance in downstream tasks where data is scarce. We first address initial and continued pre-training strategies to better leverage prior knowledge in unseen domains and languages. We then examine how to maximize the utility of limited data during fine-tuning and few-shot learning. The final section takes a task-specific perspective, reviewing models and methods suited for different levels of data scarcity. Our goal is to provide practitioners with practical guidelines for overcoming the challenges posed by constrained data while also highlighting promising directions for future research.
Ultrasound is widely used in medical diagnostics allowing for accessible and powerful imaging but suffers from resolution limitations due to diffraction and the finite aperture of the imaging system, which restricts diagnostic use. The impulse function of an ultrasound imaging system is called the point spread function (PSF), which is convolved with the spatial distribution of reflectors in the image formation process. Recovering high-resolution reflector distributions by removing image distortions induced by the convolution process improves image clarity and detail. Conventionally, deconvolution techniques attempt to rectify the imaging system’s dependent PSF, working directly on the radio-frequency (RF) data. However, RF data is often not readily accessible. Therefore, we introduce a physics-based deconvolution process using a modeled PSF, working directly on the more commonly available B-mode images. By leveraging Implicit Neural Representations (INRs), we learn a continuous mapping from spatial locations to their respective echogenicity values, effectively compensating for the discretized image space. Our contribution consists of a novel methodology for retrieving a continuous echogenicity map directly from a B-mode image through a differentiable physics-based rendering pipeline for ultrasound resolution enhancement. We qualitatively and quantitatively evaluate our approach on synthetic data, demonstrating improvements over traditional methods in metrics such as PSNR and SSIM. Furthermore, we show qualitative enhancements on an ultrasound phantom and an in-vivo acquisition of a carotid artery.
In radiation therapy (RT), an accurate delineation of the regions of interest (ROI) and organs at risk (OAR) allows for a more targeted irradiation with reduced side effects. The current clinical workflow for combined MR-linear accelerator devices (MR-linacs) requires the acquisition of a planning MR volume (MR-P), in which the ROI and OAR are accurately segmented by the clinical team. These segmentation maps (S-P) are transferred to the MR acquired on the day of the RT fraction (MR-Fx) using registration, followed by time-consuming manual corrections. The goal of this paper is to enable accurate automatic segmentation of MR-Fx using S-P without clinical workflow disruption. We propose a novel UNet-based architecture, CloverNet, that takes as inputs MR-Fx and S-P in two separate encoder branches, whose latent spaces are concatenated in the bottleneck to generate an improved segmentation of MP-Fx. CloverNet improves the absolute Dice Score by 3.73% (relative +4.34%, p<0.001) when compared with conventional 3D UNet. Moreover, we believe this approach is potentially applicable to other longitudinal use cases in which a prior segmentation of the ROI is available.
Generally, the small size of public medical imaging datasets coupled with stringent privacy concerns, hampers the advancement of data-hungry deep learning models in medical imaging. This study addresses these challenges for 3D cardiac MRI images in the short-axis view. We propose Latent Diffusion Models that generate synthetic images conditioned on medical attributes, while ensuring patient privacy through differentially private model training. To our knowledge, this is the first work to apply and quantify differential privacy in 3D medical image generation. We pre-train our models on public data and finetune them with differential privacy on the UK Biobank dataset. Our experiments reveal that pre-training significantly improves model performance, achieving a Fréchet Inception Distance (FID) of 26.77 at ϵ=10, compared to 92.52 for models without pre-training. Additionally, we explore the trade-off between privacy constraints and image quality, investigating how tighter privacy budgets affect output controllability and may lead to degraded performance. Our results demonstrate that proper consideration during training with differential privacy can substantially improve the quality of synthetic cardiac MRI images, but there are still notable challenges in achieving consistent medical realism.
Surgical data science (SDS) is a field that analyzes patient data before, during, and after surgery to improve surgical outcomes and skills. However, surgical data is scarce, heterogeneous, and complex, which limits the applicability of existing machine learning methods. In this work, we introduce the novel task of future video generation in laparoscopic surgery. This task can augment and enrich the existing surgical data and enable various applications, such as simulation, analysis, and robot-aided surgery. Ultimately, it involves not only understanding the current state of the operation but also accurately predicting the dynamic and often unpredictable nature of surgical procedures. Our proposed method, VISAGE (VIdeo Synthesis using Action Graphs for Surgery), leverages the power of action scene graphs to capture the sequential nature of laparoscopic procedures and utilizes diffusion models to synthesize temporally coherent video sequences. VISAGE predicts the future frames given only a single initial frame, and the action graph triplets. By incorporating domain-specific knowledge through the action graph, VISAGE ensures the generated videos adhere to the expected visual and motion patterns observed in real laparoscopic procedures. The results of our experiments demonstrate high-fidelity video generation for laparoscopy procedures, which enables various applications in SDS.
Graph-based holistic scene representations facilitate surgical workflow understanding and have recently demonstrated significant success. However, this task is often hindered by the limited availability of densely annotated surgical scene data. In this work, we introduce an end-to-end framework for the generation and optimization of surgical scene graphs on a downstream task. Our approach leverages the flexibility of graph-based spectral clustering and the generalization capability of foundation models to generate unsupervised scene graphs with learnable properties. We reinforce the initial spatial graph with sparse temporal connections using local matches between consecutive frames to predict temporally consistent clusters across a temporal neighborhood. By jointly optimizing the spatiotemporal relations and node features of the dynamic scene graph with the downstream task of phase segmentation, we address the costly and annotation-burdensome task of semantic scene comprehension and scene graph generation in surgical videos using only weak surgical phase labels. Further, by incorporating effective intermediate scene representation disentanglement steps within the pipeline, our solution outperforms the SOTA on the CATARACTS dataset by 8% accuracy and 10% F1 score in surgical workflow recognition.
Topological accuracy in medical image segmentation is a highly important property for downstream applications such as network analysis and flow modeling in vessels or cell counting. Recently, significant methodological advancements have brought well-founded concepts from algebraic topology to binary segmentation. However, these approaches have been underexplored in multi-class segmentation scenarios, where topological errors are common. We propose a general loss function for topologically faithful multi-class segmentation extending the recent Betti matching concept, which is based on induced matchings of persistence barcodes. We project the N-class segmentation problem to N single-class segmentation tasks, which allows us to use 1-parameter persistent homology, making training of neural networks computationally feasible. We validate our method on a comprehensive set of four medical datasets with highly variant topological characteristics. Our loss formulation significantly enhances topological correctness in cardiac, cell, artery-vein, and Circle of Willis segmentation.
Deep learning (DL) methods typically require large datasets to effectively learn data distributions. However, in the medical field, data is often limited in quantity, and acquiring labeled data can be costly. To mitigate this data scarcity, data augmentation techniques are commonly employed. Among these techniques, generative models play a pivotal role in expanding datasets. However, when it comes to ultrasound (US) imaging, the authenticity of generated data often diminishes due to the oversight of ultrasound physics.
We propose a novel approach to improve the quality of generated US images by introducing a physics-based diffusion model that is specifically designed for this image modality. The proposed model incorporates an US-specific scheduler scheme that mimics the natural behavior of sound wave propagation in ultrasound imaging. Our analysis demonstrates how the proposed method aids in modeling the attenuation dynamics in US imaging. We present both qualitative and quantitative results based on standard generative model metrics, showing that our proposed method results in overall more plausible images.
In this work, we introduce Progressive Growing of Patch Size, a resource-efficient implicit curriculum learning approach for dense prediction tasks. Our curriculum approach is defined by growing the patch size during model training, which gradually increases the task’s difficulty. We integrated our curriculum into the nnU-Net framework and evaluated the methodology on all 10 tasks of the Medical Segmentation Decathlon. With our approach, we are able to substantially reduce runtime, computational costs, and emissions of network training compared to classical constant patch size training. In our experiments, the curriculum approach resulted in improved convergence. We are able to outperform standard nnU-Net training, which is trained with constant patch size, in terms of Dice Score on 7 out of 10 MSD tasks while only spending roughly 50% of the original training runtime. To the best of our knowledge, our Progressive Growing of Patch Size is the first successful employment of a sample-length curriculum in the form of patch size in the field of computer vision.
Positron emission tomography (PET) is a well-established functional imaging technique for diagnosing brain disorders. However, PET’s high costs and radiation exposure limit its widespread use. In contrast, magnetic resonance imaging (MRI) does not have these limitations. Although it also captures neurodegenerative changes, MRI is a less sensitive diagnostic tool than PET. To close this gap, we aim to generate synthetic PET from MRI. Herewith, we introduce PASTA, a novel pathology-aware image translation framework based on conditional diffusion models. Compared to the state-of-the-art methods, PASTA excels in preserving both structural and pathological details in the target modality, which is achieved through its highly interactive dual-arm architecture and multi-modal condition integration. A cycle exchange consistency and volumetric generation strategy elevate PASTA’s capability to produce high-quality 3D PET scans. Our qualitative and quantitative results confirm that the synthesized PET scans from PASTA not only reach the best quantitative scores but also preserve the pathology correctly. For Alzheimer’s classification, the performance of synthesized scans improves over MRI by 4%, almost reaching the performance of actual PET.
Physics-inspired regularization is desired for intra-patient image registration since it can effectively capture the biomechanical characteristics of anatomical structures. However, a major challenge lies in the reliance on physical parameters: Parameter estimations vary widely across the literature, and the physical properties themselves are inherently subject-specific. In this work, we introduce a novel data-driven method that leverages hypernetworks to learn the tissue-dependent elasticity parameters of an elastic regularizer. Notably, our approach facilitates the estimation of patient-specific parameters without the need to retrain the network. We evaluate our method on three publicly available 2D and 3D lung CT and cardiac MR datasets. We find that with our proposed subject-specific tissue-dependent regularization, a higher registration quality is achieved across all datasets compared to using a global regularizer.
Ultrasound imaging is challenging to interpret due to non-uniform intensities, low contrast, and inherent artifacts, necessitating extensive training for non-specialists. Advanced representation with clear tissue structure separation could greatly assist clinicians in mapping underlying anatomy and distinguishing between tissue layers. Decomposing an image into semantically meaningful segments is mainly achieved using supervised segmentation algorithms. Unsupervised methods are beneficial, as acquiring large labeled datasets is difficult and costly, but despite their advantages, they still need to be explored in ultrasound. This paper proposes a novel unsupervised deep learning strategy tailored to ultrasound to obtain easily interpretable tissue separations. We integrate key concepts from unsupervised deep spectral methods, which combine spectral graph theory with deep learning methods. We utilize self-supervised transformer features for spectral clustering to generate meaningful segments based on ultrasound-specific metrics and shape and positional priors, ensuring semantic consistency across the dataset. We evaluate our unsupervised deep learning strategy on three ultrasound datasets, showcasing qualitative results across anatomical contexts without label requirements. We also conduct a comparative analysis against other clustering algorithms to demonstrate superior segmentation performance, boundary preservation, and label consistency.
Nuclei semantic segmentation is a key component for advancing machine learning and deep learning applications in digital pathology. However, most existing segmentation models are trained and tested on high-quality data acquired with expensive equipment, such as whole slide scanners, which are not accessible to most pathologists in developing countries. These pathologists rely on low-resource data acquired with low-precision microscopes, smartphones, or digital cameras, which have different characteristics and challenges than high-resource data. Therefore, there is a gap between the state-of-the-art segmentation models and the real-world needs of low-resource settings. This work aims to bridge this gap by presenting the first fully annotated African multi-organ dataset for histopathology nuclei semantic segmentation acquired with a low-precision microscope. We also evaluate state-of-the-art segmentation models, including spectral feature extraction encoder and vision transformer-based models, and stain normalization techniques for color normalization of Hematoxylin and Eosin-stained histopathology slides. Our results provide important insights for future research on nuclei histopathology segmentation with low-resource data.
Every day, countless surgeries are performed worldwide, each within the distinct settings of operating rooms (ORs) that vary not only in their setups but also in the personnel, tools, and equipment used. This inherent diversity poses a substantial challenge for achieving a holistic understanding of the OR, as it requires models to generalize beyond their initial training datasets. To reduce this gap, we introduce ORacle, an advanced vision-language model designed for holistic OR domain modeling, which incorporates multi-view and temporal capabilities and can leverage external knowledge during inference, enabling it to adapt to previously unseen surgical scenarios. This capability is further enhanced by our novel data augmentation framework, which significantly diversifies the training dataset, ensuring ORacle’s proficiency in applying the provided knowledge effectively. In rigorous testing, in scene graph generation, and downstream tasks on the 4D-OR dataset, ORacle not only demonstrates state-of-the-art performance but does so requiring less data than existing models. Furthermore, its adaptability is displayed through its ability to interpret unseen views, actions, and appearances of tools and equipment. This demonstrates ORacle’s potential to significantly enhance the scalability and affordability of OR domain modeling and opens a pathway for future advancements in surgical data science.
In emergency departments, rural hospitals, or clinics in less developed regions, clinicians often lack fast image analysis by trained radiologists, which can have a detrimental effect on patients’ healthcare. Large Language Models (LLMs) have the potential to alleviate some pressure from these clinicians by providing insights that can help them in their decision-making. While these LLMs achieve high test results on medical exams showcasing their great theoretical medical knowledge, they tend not to follow medical guidelines. In this work, we introduce a new approach for zero-shot guideline-driven decision support. We model a system of multiple LLM agents augmented with a contrastive vision-language model that collaborate to reach a patient diagnosis. After providing the agents with simple diagnostic guidelines, they will synthesize prompts and screen the image for findings following these guidelines. Finally, they provide understandable chain-of-thought reasoning for their diagnosis, which is then self-refined to consider inter-dependencies between diseases. As our method is zero-shot, it is adaptable to settings with rare diseases, where training data is limited, but expert-crafted disease descriptions are available. We evaluate our method on two chest X-ray datasets, CheXpert and ChestX-ray 14 Longtail, showcasing performance improvement over existing zero-shot methods and generalizability to rare diseases.
We present a new model for deformable image registration, which learns in an unsupervised way a data-specific similarity metric. The proposed method consists of two neural networks, one that maps pairs of input images to transformations which align them, and one that provides the similarity metric whose maximisation guides the image alignment. We parametrise the similarity metric as an energy-based model, which is simple to train and allows us to improve the accuracy of image registration compared to other models with learnt similarity metrics by taking advantage of a more general mathematical formulation, as well as larger datasets. We also achieve substantial improvement in the accuracy of inter-patient image registration on MRI scans from the OASIS dataset compared to models that rely on traditional functions.
VoxelMorph, proposed in 2018, utilizes Convolutional Neural Networks (CNNs) to address medical image registration problems. In 2021 TransMorph advanced this approach by replacing CNNs with Attention mechanisms, claiming enhanced performance. More recently, the rise of Mamba with selective state space models has led to MambaMorph, which substituted Attention with Mamba blocks, asserting superior registration. These developments prompt a critical question: does chasing the latest computational trends with “more advanced” computational blocks genuinely enhance registration accuracy, or is it merely hype? Furthermore, the role of classic high-level registration-specific designs, such as coarse-to-fine pyramid mechanism, correlation calculation, and iterative optimization, warrants scrutiny, particularly in differentiating their influence from the aforementioned low-level computational blocks. In this study, we critically examine these questions through a rigorous evaluation in brain MRI registration. We employed modularized components for each block and ensured unbiased comparisons across all methods and designs to disentangle their effects on performance. Our findings indicate that adopting “advanced” computational elements fails to significantly improve registration accuracy. Instead, well-established registration-specific designs offer fair improvements, enhancing results by a marginal 1.5% over the baseline. Our findings emphasize the importance of rigorous, unbiased evaluation and contribution disentanglement of all low- and high-level registration components, rather than simply following the computer vision trends with “more advanced” computational blocks. We advocate for simpler yet effective solutions and novel evaluation metrics that go beyond conventional registration accuracy, warranting further research across various organs and modalities.
In this multi-center study, we proposed a structured reporting (SR) framework for non-small cell lung cancer (NSCLC) and developed a software-assisted tool to automatically translate image-based findings and annotations into TNM classifications. The aim of this study was to validate the software-assisted SR tool for NSCLC, assess its potential clinical impact in a proof-of-concept study, and evaluate current reporting standards in participating institutions.
Diagnosing dementia, particularly for Alzheimer’s Disease (AD) and frontotemporal dementia (FTD), is complex due to overlapping symptoms. While magnetic resonance imaging (MRI) and positron emission tomography (PET) data are critical for the diagnosis, integrating these modalities in deep learning faces challenges, often resulting in suboptimal performance compared to using single modalities. Moreover, the potential of multi-modal approaches in differential diagnosis, which holds significant clinical importance, remains largely unexplored. We propose a novel framework, DiaMond, to address these issues with vision Transformers to effectively integrate MRI and PET. DiaMond is equipped with self-attention and a novel bi-attention mechanism that synergistically combine MRI and PET, alongside a multi-modal normalization to reduce redundant dependency, thereby boosting the performance. DiaMond significantly outperforms existing multi-modal methods across various datasets, achieving a balanced accuracy of 92.4% in AD diagnosis, 65.2% for AD-MCI-CN classification, and 76.5% in differential diagnosis of AD and FTD. We also validated the robustness of DiaMond in a comprehensive ablation study.
Recent advances in generative models for medical imaging have shown promise in representing multiple modalities. However, the variability in modality availability across datasets limits the general applicability of the synthetic data they produce. To address this, we present a novel physics-informed generative model capable of synthesizing a variable number of brain MRI modalities, including those not present in the original dataset. Our approach utilizes latent diffusion models and a two-step generative process: first, unobserved physical tissue property maps are synthesized using a latent diffusion model, and then these maps are combined with a physical signal model to generate the final MRI scan. Our experiments demonstrate the efficacy of this approach in generating unseen MR contrasts and preserving physical plausibility. Furthermore, we validate the distributions of generated tissue properties by comparing them to those measured in real brain tissue.
Report generation models offer fine-grained textual interpretations of medical images like chest X-rays, yet they often lack interactivity (i.e. the ability to steer the generation process through user queries) and localized interpretability (i.e. visually grounding their predictions), which we deem essential for future adoption in clinical practice. While there have been efforts to tackle these issues, they are either limited in their interactivity by not supporting textual queries or fail to also offer localized interpretability. Therefore, we propose a novel multitask architecture and training paradigm integrating textual prompts and bounding boxes for diverse aspects like anatomical regions and pathologies. We call this approach the Chest X-Ray Explainer (ChEX). Evaluations across a heterogeneous set of 9 chest X-ray tasks, including localized image interpretation and report generation, showcase its competitiveness with SOTA models while additional analysis demonstrates ChEX’s interactive capabilities.
We present EchoScene, an interactive and controllable generative model that generates 3D indoor scenes on scene graphs. EchoScene leverages a dual-branch diffusion model that dynamically adapts to scene graphs. Existing methods struggle to handle scene graphs due to varying numbers of nodes, multiple edge combinations, and manipulator-induced node-edge operations. EchoScene overcomes this by associating each node with a denoising process and enables collaborative information exchange, enhancing controllable and consistent generation aware of global constraints. This is achieved through an information echo scheme in both shape and layout branches. At every denoising step, all processes share their denoising data with an information exchange unit that combines these updates using graph convolution. The scheme ensures that the denoising processes are influenced by a holistic understanding of the scene graph, facilitating the generation of globally coherent scenes. The resulting scenes can be manipulated during inference by editing the input scene graph and sampling the noise in the diffusion model. Extensive experiments validate our approach, which maintains scene controllability and surpasses previous methods in generation fidelity. Moreover, the generated scenes are of high quality and thus directly compatible with off-the-shelf texture generation. Our code and models are open-sourced.
In minimally invasive endovascular procedures, contrast-enhanced angiography remains the most robust imaging technique. However, it is at the expense of the patient and clinician’s health due to prolonged radiation exposure. As an alternative, interventional ultrasound has notable benefits such as being radiation-free, fast to deploy, and having a small footprint in the operating room. Yet, ultrasound is hard to interpret, and highly prone to artifacts and noise. Additionally, interventional radiologists must undergo extensive training before they become qualified to diagnose and treat patients effectively, leading to a shortage of staff, and a lack of open-source datasets. In this work, we seek to address both problems by introducing a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images, without demanding any labeled data. The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism, and is capable of learning feature changes across time and space. To facilitate training, we used synthetic ultrasound data based on physics-driven catheter insertion simulations, and translated the data into a unique CT-Ultrasound common domain, CACTUSS, to improve the segmentation performance. We generated ground truth segmentation masks by computing the optical flow between adjacent frames using FlowNet2, and performed thresholding to obtain a binary map estimate. Finally, we validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms, thus demonstrating its potential for applications to clinical data in the future.
Hintergrund: Die medizinische Codierung von radiologischen Befunden ist essenziell für eine gute Qualität der Versorgung und die korrekte Abrechnung, gleichzeitig aber eine aufwändige und fehleranfällige Aufgabe.
Ziel der Arbeit: Bewertung der Anwendbarkeit natürlicher Sprachverarbeitung (Natural Language Processing, NLP) für die ICD-10-Codierung von radiologischen Befunden in deutscher Sprache durch Finetuning geeigneter Sprachmodelle.
Material und Methoden: In dieser retrospektiven Studie wurden alle Magnetresonanztomographie(MRT)-Befunde unseres Instituts zwischen 2010 und 2020 berücksichtigt. Die ICD-10-Codes bei Entlassung wurden den jeweiligen Befunden zugeordnet, um einen Datensatz für eine Multiclass-Klassifizierung zu erstellen. Finetuning von GermanBERT und flanT5 wurde auf dem Gesamtdatensatz (dstotal) mit 1035 verschiedenen ICD-10-Codes und zwei reduzierten Datensätzen mit den 100 (ds100) und 50 (ds50) häufigsten Codes durchgeführt. Die Performance der Modelle wurde mit Top-k-Genauigkeit für k = 1, 3, 5 evaluiert. In einer Ablationsstudie wurden beide Modelle einmal auf den zugehörigen Metadaten und dem Befund allein trainiert.
Ergebnisse: Der Gesamtdatensatz bestand aus 100.672 radiologischen Befunden, die reduzierten Datensätze ds100 aus 68.103 und ds50 aus 52.293 Berichten. Die Modellperformance stieg, wenn mehrere der besten Voraussagen des Modells in Betracht gezogen wurden, die Anzahl der Zielklassen reduziert wurde und die Metadaten mit dem Befund kombiniert wurden. FlanT5 übertraf GermanBERT in allen Datensätzen und Metriken und eignet sich am besten als medizinischer Codierungsassistent, wobei eine Top-3-Genauigkeit von fast 70% im realitätsnahen Datensatz dstotal erreicht wurde.
Schlussfolgerung: Finetuning von Sprachmodellen verspricht eine zuverlässige Vorhersage von ICD-10-Codes deutscher radiologischer MRT-Befunde in unterschiedlichen Szenarien. Als Codierungsassistent kann flanT5 medizinischen Codierern helfen, informierte Entscheidungen zu treffen und potenziell ihre Arbeitsbelastung reduzieren.
Medical domain applications require a detailed understanding of the decision making process, in particular when data-driven modeling via machine learning is involved, and quantifying uncertainty in the process adds trust and interpretability to predictive models. However, current uncertainty measures in medical imaging are mostly monolithic and do not distinguish between different sources and types of uncertainty. In this paper, we advocate the distinction between so-called aleatoric and epistemic uncertainty in the medical domain and illustrate its potential in clinical decision making for the case of PET/CT image classification.
Category-level object pose estimation, aiming to predict the 6D pose and 3D size of objects from known categories, typically struggles with large intra-class shape variation. Existing works utilizing mean shapes often fall short of cap-turing this variation. To address this issue, we present Sec-ondPose, a novel approach integrating object-specific ge-ometric features with semantic category priors from DI-NOv2. Leveraging the advantage of DINOv2 in providing SE(3)-consistent semantic features, we hierarchically extract two types of SE(3)-invariant geometric features to further encapsulate local-to-global object-specific information. These geometric features are then point-aligned with DINOv2 features to establish a consistent object represen-tation under SE(3) transformations, facilitating the map-ping from camera space to the pre-defined canonical space, thus further enhancing pose estimation. Extensive exper-iments on NOCS-REAL275 demonstrate that SecondPose achieves a 12.4% leap forward over the state-of-the-art. Moreover, on a more complex dataset HouseCat6D which provides photometrically challenging objects, SecondPose still surpasses other competitors by a large margin.
This paper introduces a novel top-down representation approach for deformable image registration, which estimates the deformation field by capturing various short-and long-range flow features at different scale levels. As a Hierarchical Vision Transformer (H-ViT), we propose a dual self-attention and cross-attention mechanism that uses high-level features in the deformation field to represent low-level ones, enabling information streams in the deformation field across all voxel patch embeddings irrespective of their spatial proximity. Since high-level features contain abstract flow patterns, such patterns are expected to effectively contribute to the representation of the deformation field in lower scales. When the self-attention module utilizes within-scale short-range patterns for representation, the cross-attention modules dynamically look for the key tokens across different scales to further interact with the local query voxel patches. Our method shows superior accuracy and visual quality over the state-of-the-art registration methods in five publicly available datasets, highlighting a substantial enhancement in the performance of medical imaging registration.
Recent learning methods for object pose estimation require resource-intensive training for each individual object instance or category, hampering their scalability in real applications when confronted with previously unseen objects. In this paper, we propose MatchU, a Fuse-Describe-Match strategy for 6D pose estimation from RGB-D images. MatchU is a generic approach that fuses 2D texture and 3D geometric cues for 6D pose prediction of unseen objects. We rely on learning geometric 3D descriptors that are rotation-invariant by design. By encoding pose-agnostic geometry, the learned descriptors naturally generalize to unseen objects and capture symmetries. To tackle ambiguous associations using 3D geometry only, we fuse additional RGB information into our descriptor. This is achieved through a novel attention-based mechanism that fuses cross-modal information, together with a matching loss that leverages the latent space learned from RGB data to guide the descriptor learning process. Extensive experiments reveal the generalizability of both the RGB-D fusion strategy as well as the descriptor efficacy. Benefiting from the novel designs, MatchU surpasses all existing methods by a significant margin in terms of both accuracy and speed, even without the requirement of expensive re-training or rendering.
Estimating 6D object poses is a major challenge in 3D computer vision. Building on successful instance-level approaches, research is shifting towards category-level pose estimation for practical applications. Current category-level datasets, however, fall short in annotation quality and pose variety. Addressing this, we introduce HouseCat6D, a new category-level 6D pose dataset. It features 1) multi-modality with Polarimetric RGB and Depth (RGBD+P), 2) encompasses 194 diverse objects across 10 household cat-egories, including two photometrically challenging ones, and 3) provides high-quality pose annotations with an error range of only 1.35 mm to 1.74 mm. The dataset also includes 4) 41 large-scale scenes with comprehensive view-point and occlusion coverage,5) a checkerboard-free en-vironment, and 6) dense 6D parallel-jaw robotic grasp annotations. Additionally, we present benchmark results for leading category-level pose estimation networks.
Pathological lymph node delineation is crucial in cancer diagnosis, progression assessment, and treatment planning. The MICCAI 2023 Lymph Node Quantification Challenge published the first public dataset for pathological lymph node segmentation in the mediastinum. As lymph node annotations are expensive, the challenge was formed as a weakly supervised learning task, where only a subset of all lymph nodes in the training set have been annotated. For the challenge submission, multiple methods for training on these weakly supervised data were explored, including noisy label training, loss masking of unlabeled data, and an approach that integrated the TotalSegmentator toolbox as a form of pseudo labeling in order to reduce the number of unknown voxels. Furthermore, multiple public TCIA datasets were incorporated into the training to improve the performance of the deep learning model. Our submitted model achieved a Dice score of 0.628 and an average symmetric surface distance of 5.8~mm on the challenge test set. With our submitted model, we accomplished the third rank in the MICCAI2023 LNQ challenge. A finding of our analysis was that the integration of all visible, including non-pathological lymph nodes improved the overall segmentation performance on pathological lymph nodes of the test set. Furthermore, segmentation models trained only on clinically enlarged lymph nodes, as given in the challenge scenario, could not generalize to smaller pathological lymph nodes.
The tumor grading of patients suffering from soft-tissue sarcomas is a critical task, as an accurate classification of this high-mortality cancer entity constitutes a decisive factor in devising optimal treatment strategies. In this work, we focus on distinguishing soft-tissue sarcoma subtypes solely based on their 3D morphological characteristics, derived from tumor segmentation masks. Notably, we direct attention to overcoming the limitations of texture-based methodologies, which often fall short of providing adequate shape delineation. To this end, we propose a novel yet elegant modular geometric deep learning framework coined Global Local Graph Convolutional Network (GloLo-GCN) that integrates local and global shape characteristics into a meaningful unified shape descriptor. Evaluated on a multi-center dataset, our proposed model performs better in soft-tissue sarcoma grading than GCNs based on state-of-the-art graph convolutions and a volumetric 3D convolutional neural network, also evaluated on binary segmentation masks exclusively.
Cardiac magnetic resonance (CMR) image acquisition requires subjects to hold their breath while 2D cine images are acquired. This process assumes that the heart remains in the same position across all slices. However, differences in breathhold positions or patient motion introduce 3D slice misalignments. In this work, we propose an algorithm that simultaneously aligns all SA and LA slices by maximizing the pair-wise intensity agreement between their intersections. Unlike previous works, our approach is formulated as a subject-specific optimization problem and requires no prior knowledge of the underlying anatomy. We quantitatively demonstrate that the proposed method is robust against a large range of rotations and translations by synthetically misaligning 10 motion-free datasets and aligning them back using the proposed method.
The prevailing deep learning-based methods of predicting cardiac segmentation involve reconstructed magnetic resonance (MR) images. The heavy dependency of segmentation approaches on image quality significantly limits the acceleration rate in fast MR reconstruction. Moreover, the practice of treating reconstruction and segmentation as separate sequential processes leads to artifact generation and information loss in the intermediate stage. These issues pose a great risk to achieving high-quality outcomes. To leverage the redundant k-space information overlooked in this dual-step pipeline, we introduce a novel approach to directly deriving segmentations from sparse k-space samples using a transformer (DiSK). DiSK operates by globally extracting latent features from 2D+time k-space data with attention blocks and subsequently predicting the segmentation label of query points. We evaluate our model under various acceleration factors (ranging from 4 to 64) and compare against two image-based segmentation baselines. Our model consistently outperforms the baselines in Dice and Hausdorff distances across foreground classes for all presented sampling rates.
Ultrasound (US) imaging is widely used in diagnosing and staging abdominal diseases due to its lack of non-ionizing radiation and prevalent availability. However, significant inter-operator variability and inconsistent image acquisition hinder the widespread adoption of extensive screening programs. Robotic ultrasound systems have emerged as a promising solution, offering standardized acquisition protocols and the possibility of automated acquisition. Additionally, these systems enable access to 3D data via robotic tracking, enhancing volumetric reconstruction for improved ultrasound interpretation and precise disease diagnosis.However, the interpretability of 3D US reconstruction of abdominal images can be affected by the patient’s breathing motion. This study introduces a method to compensate for breathing motion in 3D US compounding by leveraging implicit neural representations. Our approach employs a robotic ultrasound system for automated screenings. To demonstrate the method’s effectiveness, we evaluate our proposed method for the diagnosis and monitoring of abdominal aorta aneurysms as a representative use case.Our experiments demonstrate that our proposed pipeline facilitates robust automated robotic acquisition, mitigating artifacts from breathing motion, and yields smoother 3D reconstructions for enhanced screening and medical diagnosis.
The incidence of colorectal cancer (CRC), one of the deadliest cancers around the world, is increasing. Tissue microenvironment (TME) features such as tumor-infiltrating lymphocytes (TILs) can have a crucial impact on diagnosis or decision-making for treating patients with CRC. While clinical studies showed that TILs improve the host immune response, leading to a better prognosis, inter-observer agreement for quantifying TILs is not perfect. Incorporating machine learning (ML) based applications in clinical routine may promote diagnosis reliability. Recently, ML has shown potential for making progress in routine clinical procedures. We aim to systematically review the TILs analysis based on ML in CRC histological images. Deep learning (DL) and non-DL techniques can aid pathologists in identifying TILs, and automated TILs are associated with patient outcomes. However, a large multi-institutional CRC dataset with a diverse and multi-ethnic population is necessary to generalize ML methods.
Objectives: To assess the quality of simplified radiology reports generated with the large language model (LLM) ChatGPT and to discuss challenges and chances of ChatGPT-like LLMs for medical text simplification.
Methods: In this exploratory case study, a radiologist created three fictitious radiology reports which we simplified by prompting ChatGPT with ‘Explain this medical report to a child using simple language.’’ In a questionnaire, we tasked 15 radiologists to rate the quality of the simplified radiology reports with respect to their factual correctness, completeness, and potential harm for patients. We used Likert scale analysis and inductive free-text categorization to assess the quality of the simplified reports.
Results: Most radiologists agreed that the simplified reports were factually correct, complete, and not potentially harmful to the patient. Nevertheless, instances of incorrect statements, missed relevant medical information, and potentially harmful passages were reported.
Conclusion: While we see a need for further adaption to the medical field, the initial insights of this study indicate a tremendous potential in using LLMs like ChatGPT to improve patient-centered care in radiology and other medical domains.
Clinical relevance statement: Patients have started to use ChatGPT to simplify and explain their medical reports, which is expected to affect patient-doctor interaction. This phenomenon raises several opportunities and challenges for clinical routine.
Segmenting ultrasound images is important for precise area and/or volume calculations, ensuring reliable diagnosis and effective treatment evaluation for diseases. Recently, many segmentation methods have been proposed and shown impressive performance. However, currently, there is no deeper understanding of how networks segment target regions or how they define the boundaries. In this paper, we present a new approach that analyzes ultrasound segmentation networks in terms of learned borders because border delimitation is challenging in ultrasound.
Ultrasound (US) imaging, while advantageous for its radiation-free nature, is challenging to interpret due to only partially visible organs and a lack of complete 3D information. While performing US-based diagnosis or investigation, medical professionals therefore create a mental map of the 3D anatomy. In this work, we aim to replicate this process and enhance the visual representation of anatomical structures.
Differential diagnosis of dementia is challenging due to overlapping symptoms, with structural magnetic resonance imaging (MRI) being the primary method for diagnosis. Despite the clinical value of computer-aided differential diagnosis, research has been limited, mainly due to the absence of public datasets that contain diverse types of dementia. This leaves researchers with small in-house datasets that are insufficient for training deep neural networks (DNNs). Self-supervised learning shows promise for utilizing unlabeled MRI scans in training, but small batch sizes for volumetric brain scans make its application challenging. To address these issues, we propose Triplet Training for differential diagnosis with limited target data. It consists of three key stages: (i) self-supervised pre-training on unlabeled data with Barlow Twins, (ii) self-distillation on task-related data, and (iii) fine-tuning on the target dataset. Our approach significantly outperforms traditional training strategies, achieving a balanced accuracy of 75.6%. We further provide insights into the training process by visualizing changes in the latent space after each step. Finally, we validate the robustness of Triplet Training in terms of its individual components in a comprehensive ablation study.
We address the computational barrier of deploying advanced deep learning segmentation models in clinical settings by studying the efficacy of network compression through tensor decomposition. We propose a post-training Tucker factorization that enables the decomposition of pre-existing models to reduce computational requirements without impeding segmentation accuracy. We applied Tucker decomposition to the convolutional kernels of the TotalSegmentator (TS) model, an nnU-Net model trained on a comprehensive dataset for automatic segmentation of 117 anatomical structures. Our approach reduced the floating-point operations (FLOPs) and memory required during inference, offering an adjustable trade-off between computational efficiency and segmentation quality. This study utilized the publicly available TS dataset, employing various downsampling factors to explore the relationship between model size, inference speed, and segmentation performance. The application of Tucker decomposition to the TS model substantially reduced the model parameters and FLOPs across various compression rates, with limited loss in segmentation accuracy. We removed up to 88% of the model’s parameters with no significant performance changes in the majority of classes after fine-tuning. Practical benefits varied across different graphics processing unit (GPU) architectures, with more distinct speed-ups on less powerful hardware. Post-hoc network compression via Tucker decomposition presents a viable strategy for reducing the computational demand of medical image segmentation models without substantially sacrificing accuracy. This approach enables the broader adoption of advanced deep learning technologies in clinical practice, offering a way to navigate the constraints of hardware capabilities.
Magnetic resonance imaging (MRI) is critical for diagnosing neurodegenerative diseases, yet accurately assessing mild cortical atrophy remains a challenge due to its subtlety. Automated cortex reconstruction, paired with healthy reference ranges, aids in pinpointing pathological atrophy, yet their generalization is limited by biases from image acquisition and processing. We introduce the concept of stochastic cortical self-reconstruction (SCSR) that creates a subject-specific healthy reference by taking MRI-derived thicknesses as input and, therefore, implicitly accounting for potential confounders. SCSR randomly corrupts parts of the cortex and self-reconstructs them from the remaining information. Trained exclusively on healthy individuals, repeated self-reconstruction generates a stochastic reference cortex for assessing deviations from the norm. We present three implementations of this concept: XGBoost applied on parcels, and two autoencoders on vertex level – one based on a multilayer perceptron and the other using a spherical U-Net. These models were trained on healthy subjects from the UK Biobank and subsequently evaluated across four public Alzheimer’s datasets. Finally, we deploy the model on clinical in-house data, where deviation maps’ high spatial resolution aids in discriminating between four types of dementia.
Explaining predictions of black-box neural networks is crucial when applied to decision-critical tasks. Thus, attribution maps are commonly used to identify important image regions, despite prior work showing that humans prefer explanations based on similar examples. To this end, ProtoPNet learns a set of class-representative feature vectors (prototypes) for case-based reasoning. During inference, similarities of latent features to prototypes are linearly classified to form predictions and attribution maps are provided to explain the similarity. In this work, we evaluate whether architectures for case-based reasoning fulfill established axioms required for faithful explanations using the example of ProtoPNet. We show that such architectures allow the extraction of faithful explanations. However, we prove that the attribution maps used to explain the similarities violate the axioms. We propose a new procedure to extract explanations for trained ProtoPNets, named ProtoPFaith. Conceptually, these explanations are Shapley values, calculated on the similarity scores of each prototype. They allow to faithfully answer which prototypes are present in an unseen image and quantify each pixel’s contribution to that presence, thereby complying with all axioms. The theoretical violations of ProtoPNet manifest in our experiments on three datasets (CUB-200-2011, Stanford Dogs, RSNA) and five architectures (ConvNet, ResNet, ResNet50, WideResNet50, ResNeXt50). Our experiments show a qualitative difference between the explanations given by ProtoPNet and ProtoPFaith. Additionally, we quantify the explanations with the Area Over the Perturbation Curve, on which ProtoPFaith outperforms ProtoPNet on all experiments by a factor >10^3.
Medical image registration aims to identify the spatial deformation between images of the same anatomical region and is fundamental to image-based diagnostics and therapy. To date, the majority of the deep learning-based registration methods employ regularizers that enforce global spatial smoothness, e.g., the diffusion regularizer. However, such regularizers are not tailored to the data and might not be capable of reflecting the complex underlying deformation. In contrast, physics-inspired regularizers promote physically plausible deformations. One such regularizer is the linear elastic regularizer, which models the deformation of elastic material. These regularizers are driven by parameters that define the material’s physical properties. For biological tissue, a wide range of estimations of such parameters can be found in the literature, and it remains an open challenge to identify suitable parameter values for successful registration. To overcome this problem and to incorporate physical properties into learning-based registration, we propose to use a hypernetwork that learns the effect of the physical parameters of a physics-inspired regularizer on the resulting spatial deformation field. In particular, we adapt the HyperMorph framework to learn the effect of the two elasticity parameters of the linear elastic regularizer. Our approach enables the efficient discovery of suitable, data-specific physical parameters at test time. To the best of our knowledge, we are the first to use a hypernetwork to learn physics-inspired regularization for medical image registration. We evaluate our approach on 3D intrapatient lung CT images. The results show that the linear elastic regularizer can yield comparable results to the diffusion regularizer in unsupervised learning-based registration while predicting deformations with fewer foldings. With our method, the adaptation of the physical parameters to the data can successfully be performed at test time
Undersampling is a common method in Magnetic Resonance Imaging (MRI) to subsample the number of data points in k-space, reducing acquisition times at the cost of decreased image quality. A popular approach is to employ undersampling patterns following various strategies, e.g., variable density sampling or radial trajectories. In this work, we propose a method that directly learns the under-sampling masks from data points, thereby also providing task- and domain-specific patterns. To solve the resulting discrete optimization problem, we propose a general optimization routine called ProM: A fully probabilistic, differentiable, versatile, and model-free framework for mask optimization that enforces acceleration factors through a convex constraint. Analyzing knee, brain, and cardiac MRI datasets with our method, we discover that different anatomic regions reveal distinct optimal undersampling masks, demonstrating the benefits of using custom masks, tailored for a downstream task. For example, ProM can create undersampling masks that maximize performance in downstream tasks like segmentation with networks trained on fully-sampled MRIs. Even with extreme acceleration factors, ProM yields reasonable performance while being more versatile than existing methods, paving the way for data-driven all-purpose mask generation
Background: Radiological age assessment using reference studies is inherently limited in accuracy due to a finite number of assignable skeletal maturation stages. To overcome this limitation, we present a deep learning approach for continuous age assessment based on clavicle ossification in computed tomography (CT).
Methods: Thoracic CT scans were retrospectively collected from the picture archiving and communication system. Individuals aged 15.0 to 30.0 years examined in routine clinical practice were included. All scans were automatically cropped around the medial clavicular epiphyseal cartilages. A deep learning model was trained to predict a person’s chronological age based on these scans. Performance was evaluated using mean absolute error (MAE). Model performance was compared to an optimistic human reader performance estimate for an established reference study method.
Results: The deep learning model was trained on 4,400 scans of 1,935 patients (training set: mean age =
24.2 years ± 4.0, 1132 female) and evaluated on 300 scans of 300 patients with a balanced age and sex distribution (test set: mean age = 22.5 years ± 4.4, 150 female). Model MAE was 1.65 years, and the highest absolute error was 6.40 years for females and 7.32 years for males. However, performance could be attributed to norm-variants or pathologic disorders. Human reader estimate MAE was 1.84 years and the highest absolute error was 3.40 years for females and 3.78 years for males.
Conclusions: We present a deep learning approach for continuous age predictions using CT volumes highlighting the medial clavicular epiphyseal cartilage with performance comparable to the human reader estimate.
The reconstruction of cortical surfaces is a prerequisite for quantitative analyses of the cerebral cortex in magnetic resonance imaging (MRI). Existing segmentation-based methods separate the surface registration from the surface extraction, which is computationally inefficient and prone to distortions. We introduce Vox2Cortex-Flow (V2C-Flow), a deep mesh-deformation technique that learns a deformation field from a brain template to the cortical surfaces of an MRI scan. To this end, we present a geometric neural network that models the deformation-describing ordinary differential equation in a continuous manner. The network architecture comprises convolutional and graph-convolutional layers, which allows it to work with images and meshes at the same time. V2C-Flow is not only very fast, requiring less than two seconds to infer all four cortical surfaces, but also establishes vertex-wise correspondences to the template during reconstruction. In addition, V2C-Flow is the first approach for cortex reconstruction that models white matter and pial surfaces jointly, therefore avoiding intersections between them. Our comprehensive experiments on internal and external test data demonstrate that V2C-Flow results in cortical surfaces that are state-of-the-art in terms of accuracy. Moreover, we show that the established correspondences are more consistent than in FreeSurfer and that they can directly be utilized for cortex parcellation and group analyses of cortical thickness.
Reconstructing the cortex from longitudinal MRI is indispensable for analyzing morphological changes in the human brain. Despite the recent disruption of cortical surface reconstruction with deep learning, challenges arising from longitudinal data are still persistent. Especially the lack of strong spatiotemporal point correspondence hinders downstream analyses due to the introduced noise. To address this issue, we present V2C-Long, the first dedicated deep learning-based cortex reconstruction method for longitudinal MRI. In contrast to existing methods, V2C-Long surfaces are directly comparable in a cross-sectional and longitudinal manner. We establish strong inherent spatiotemporal correspondences via a novel composition of two deep mesh deformation networks and fast aggregation of feature-enhanced within-subject templates. The results on internal and external test data demonstrate that V2C-Long yields cortical surfaces with improved accuracy and consistency compared to previous methods. Finally, this improvement manifests in higher sensitivity to regional cortical atrophy in Alzheimer’s disease.
Recent years have witnessed a surge of interest in integrating high-dimensional data captured by multisource sensors, driven by the impressive success of neural networks in integrating multimodal data. However, the integration of heterogeneous multimodal data poses a significant challenge, as confounding effects and dependencies among such heterogeneous data sources introduce unwanted variability and bias, leading to suboptimal performance of multimodal models. Therefore, it becomes crucial to normalize the low- or high-level features extracted from data modalities before their fusion takes place. This paper introduces RegBN, a novel approach for multimodal Batch Normalization with REGularization. RegBN uses the Frobenius norm as a regularizer term to address the side effects of confounders and underlying dependencies among different data sources. The proposed method generalizes well across multiple modalities and eliminates the need for learnable parameters, simplifying training and inference. We validate the effectiveness of RegBN on eight databases from five research areas, encompassing diverse modalities such as language, audio, image, video, depth, tabular, and 3D MRI. The proposed method demonstrates broad applicability across different architectures such as multilayer perceptrons, convolutional neural networks, and vision transformers, enabling effective normalization of both low- and high-level features in multimodal neural networks.
Controllable scene synthesis aims to create interactive environments for numerous industrial use cases. Scene graphs provide a highly suitable interface to facilitate these applications by abstracting the scene context in a compact manner. Existing methods, reliant on retrieval from extensive databases or pre-trained shape embeddings, often overlook scene-object and object-object relationships, leading to inconsistent results due to their limited generation capacity. To address this issue, we present CommonScenes, a fully generative model that converts scene graphs into corresponding controllable 3D scenes, which are semantically realistic and conform to commonsense. Our pipeline consists of two branches, one predicting the overall scene layout via a variational auto-encoder and the other generating compatible shapes via latent diffusion, capturing global scene-object and local inter-object relationships in the scene graph while preserving shape diversity. The generated scenes can be manipulated by editing the input scene graph and sampling the noise in the diffusion model. Due to the lack of a scene graph dataset offering high-quality object-level meshes with relations, we also construct SG-FRONT, enriching the off-the-shelf indoor dataset 3D-FRONT with additional scene graph labels. Extensive experiments are conducted on SG-FRONT, where CommonScenes shows clear advantages over other methods regarding generation consistency, quality, and diversity. Codes and the dataset are available on the website.
Aligning 2D ultrasound images with 3D CT scans of the liver holds significant clinical value in enhancing diagnostic precision, surgical planning, and treatment delivery. Conventional approaches primarily rely on optimization techniques, which often have a limited capture range and are susceptible to initialization errors. To address these limitations, we define the problem as “probe pose regression” and leverage deep learning for a more robust and efficient solution for liver US-CT registration without access to paired data. The proposed method is a three-part framework that combines ultrasound rendering, generative model and pose regression. In the first stage, we exploit a differentiable ultrasound rendering model designed to synthesize ultrasound images given segmentation labels. We let the downstream task optimize the rendering parameters, enhancing the performance of the overall method. In the second stage, a generative model bridges the gap between real and rendered ultrasound images, enabling application on real B-mode images. Finally, we use a patient-specific pose regression network, trained self-supervised with only synthetic images and their known poses. We use ultrasound, and CT scans from a dual-modality human abdomen phantom to validate the proposed method.
Our experimental results indicate that the proposed method can estimate probe poses within an acceptable error margin, which can later be fine-tuned using conventional methods. This capability confirms that the proposed framework can serve as a reliable initialization step for US-CT fusion and achieve fully automated US-CT fusion when coupled with conventional methods.
Optimizing a machine learning (ML) pipeline for radiomics analysis involves numerous choices in data set composition, preprocessing, and model selection. Objective identification of the optimal setup is complicated by correlated features, interdependency structures, and a multitude of available ML algorithms. Therefore, we present a radiomics-based benchmarking framework to optimize a comprehensive ML pipeline for the prediction of overall survival. This study is conducted on an image set of patients with hepatic metastases of colorectal cancer, for which radiomics features of the whole liver and of metastases from computed tomography images were calculated. A mixed model approach was used to find the optimal pipeline configuration and to identify the added prognostic value of radiomics features.
Rationale and objectives: We evaluate the automatic identification of type 2 diabetes from neck-to-knee, two-point Dixon MRI scans with 3D convolutional neural networks on a large, population-based dataset. To this end, we assess the best combination of MRI contrasts and stations for diabetes prediction, and the benefit of integrating risk factors.
Materials and methods: Subjects with type 2 diabetes mellitus have been identified in the prospective UK Biobank Imaging study, and a matched control sample has been created to avoid confounding bias. Five-fold cross-validation is used for the evaluation. All scans from the two-point Dixon neck-to-knee sequence have been standardized. A neural network that considers multi-channel MRI input was developed and integrates clinical information in tabular format. An ensemble strategy is used to combine multi-station MRI predictions. A subset with quantitative fat measurements is identified for comparison to prior approaches.
Results: MRI scans from 3406 subjects (mean age, 66.2 years ± 7.1 [standard deviation]; 1128 women) were analyzed with 1703 diabetics. A balanced accuracy of 78.7%, AUC ROC of 0.872, and an average precision of 0.878 was obtained for the classification of diabetes. The ensemble over multiple Dixon MRI stations yields better performance than selecting the individually best station. Moreover, combining fat and water scans as multi-channel inputs to the networks improves upon just using single contrasts as input. Integrating clinical information about known risk factors of diabetes in the network boosts the performance across all stations and the ensemble. The neural network achieved superior results compared to the prediction based on quantitative MRI measurements.
Conclusions: The developed deep learning model accurately predicted type 2 diabetes from neck-to-knee two-point Dixon MRI scans.
Purpose: To analyze and remove protected feature effects in chest radiograph embeddings of deep learning models. Methods: An orthogonalization is utilized to remove the influence of protected features (e.g., age, sex, race) in CXR embeddings, ensuring feature-independent results. To validate the efficacy of the approach, we retrospectively study the MIMIC and CheXpert datasets using three pre-trained models, namely a supervised contrastive, a self-supervised contrastive, and a baseline classifier model. Our statistical analysis involves comparing the original versus the orthogonalized embeddings by estimating protected feature influences and evaluating the ability to predict race, age, or sex using the two types of embeddings. Results: Our experiments reveal a significant influence of protected features on predictions of pathologies. Applying orthogonalization removes these feature effects. Apart from removing any influence on pathology classification, while maintaining competitive predictive performance, orthogonalized embeddings further make it infeasible to directly predict protected attributes and mitigate subgroup disparities. Conclusion: The presented work demonstrates the successful application and evaluation of the orthogonalization technique in the domain of chest X-ray image classification.
Segmentation of anatomical shapes from medical images has taken an important role in the automation of clinical measurements. While typical deep-learning segmentation approaches are performed on discrete voxels, the underlying objects being analysed exist in a real-valued continuous space. Approaches that rely on convolutional neural networks (CNNs) are limited to grid-like inputs and not easily applicable to sparse or partial measurements. We propose a novel family of image segmentation models that tackle many of CNNs’ shortcomings: Neural Implicit Segmentation Functions (NISF). Our framework takes inspiration from the field of neural implicit functions where a network learns a mapping from a real-valued coordinate-space to a shape representation. NISFs have the ability to segment anatomical shapes in high-dimensional continuous spaces. Training is not limited to voxelized grids, and covers applications with sparse and partial data. Interpolation between observations is learnt naturally in the training procedure and requires no post-processing. Furthermore, NISFs allow the leveraging of learnt shape priors to make predictions for regions outside of the original image plane. We go on to show the framework achieves dice scores of on a (3D+t) short-axis cardiac segmentation task using the UK Biobank dataset. We also provide a qualitative analysis on our frameworks ability to perform segmentation and image interpolation on unseen regions of an image volume at arbitrary resolutions.
Inpainting has recently been employed as a successful deep-learning technique for unsupervised model discovery in medical image analysis by taking advantage of the strong priors learned by models to reconstruct the structure and texture of missing parts in images. Even though the learned features depend on the masks as well as the images, the masks used for inpainting are typically random and independent of the dataset, due to the unpredictability of the content of images, i.e., different objects and shapes can appear in different locations in images. However, this is rarely the case for medical imaging data since they are obtained from similar anatomies. Still, random square masks are the most popular technique for inpainting in medical imaging. In this work, we propose a pipeline to generate, position and sample the masks to efficiently learn the shape and structures of the anatomy and generate a myriad of diverse anatomy-aware masks, aiding the model in learning the statistical shape prior to the topology of the organs of interest. We demonstrate the impact of our approach compared to other masking mechanisms in the reconstruction of anatomy. We compare the effectiveness of our proposed masking approach over square-shaped masks, which are traditionally used in medical imaging, and irregular shape masks, which are used in SOTA inpainting literature.
Text-conditioned image generation has made significant progress in recent years with generative adversarial networks and more recently, diffusion models. While diffusion models conditioned on text prompts have produced impressive and high-quality images, accurately representing complex text prompts such as the number of instances of a specific object remains challenging.To address this limitation, we propose a novel guidance approach for the sampling process in the diffusion model that leverages bounding box and segmentation map information at inference time without additional training data. Through a novel loss in the sampling process, our approach guides the model with semantic features from CLIP embeddings and enforces geometric constraints, leading to high-resolution images that accurately represent the scene. To obtain bounding box and segmentation map information, we structure the text prompt as a scene graph and enrich the nodes with CLIP embeddings. Our proposed model achieves state-of-the-art performance on two public benchmarks for image generation from scene graphs, surpassing both scene graph to image and text-based diffusion models in various metrics. Our results demonstrate the effectiveness of incorporating bounding box and segmentation map guidance in the diffusion model sampling process for more accurate text-to-image generation.
Although purely transformer-based architectures pretrained on large datasets are introduced as foundation models for general computer vision tasks, hybrid models that incorporate combinations of convolution and transformer blocks showed state-of-the-art performance in more specialized tasks. Nevertheless, despite the performance gain of both pure and hybrid transformer-based architectures compared to convolutional networks, their high training cost and complexity make it challenging to use them in real scenarios. In this work, we propose a novel and simple architecture based on only convolutional layers and show that by just taking advantage of the attention map visualizations obtained from a self-supervised pretrained vision transformer network, complex transformer-based networks, and even 3D architectures are outperformed with much fewer computation costs. The proposed architecture is composed of two encoder branches with the original image as input in one branch and the attention map visualizations of the same image from multiple self-attention heads from a pre-trained DINO model in the other branch. The results of our experiments on medical imaging datasets show that the extracted attention map visualizations from the attention heads of a pre-trained transformer architecture combined with the image provide strong prior knowledge for a pure CNN architecture to outperform CNN-based and transformer-based architectures.
Abdominal organ segmentation from CT and MRI is an essential prerequisite for surgical planning and computer-aided navigation systems. It is challenging due to the high variability in the shape, size, and position of abdominal organs. Three-dimensional numeric representations of abdominal shapes with point-wise correspondence to a template are further important for quantitative and statistical analyses thereof. Recently, template-based surface extraction methods have shown promising advances for direct mesh reconstruction from volumetric scans. However, the generalization of these deep learning-based approaches to different organs and datasets, a crucial property for deployment in clinical environments, has not yet been assessed. We close this gap and employ template-based mesh reconstruction methods for joint liver, kidney, pancreas, and spleen segmentation. Our experiments on manually annotated CT and MRI data reveal limited generalization capabilities of previous methods to organs of different geometry and weak performance on small datasets. We alleviate these issues with a novel deep diffeomorphic mesh-deformation architecture and an improved training scheme. The resulting method, UNetFlow, generalizes well to all four organs and can be easily fine-tuned on new data. Moreover, we propose a simple registration-based post-processing that aligns voxel and mesh outputs to boost segmentation accuracy.
Radiomics, involving analysis of calculated, quantitative features from medical images with machine learning tools, shares the instability challenge with other high-dimensional data analyses due to variations in the training set. This instability affects model interpretation and feature importance assessment. To enhance stability and interpretability, we introduce grouped feature importance, shedding light on tool limitations and advocating for more reliable radiomics-based analysis methods.
While recent advances in large-scale foundational models show promising results, their application to the medical domain has not yet been explored in detail. In this paper, we progress into the realms of large-scale modeling in medical synthesis by proposing Cheff - a foundational cascaded latent diffusion model, which generates highly-realistic chest radiographs providing state-of-the-art quality on a 1-megapixel scale. We further propose MaCheX, which is a unified interface for public chest datasets and forms the largest open collection of chest X-rays up to date. With Cheff conditioned on radiological reports, we further guide the synthesis process over text prompts and unveil the research area of report-to-chest-X-ray generation.
Although the preservation of shape continuity and physiological anatomy is a natural assumption in the segmentation of medical images, it is often neglected by deep learning methods that mostly aim for the statistical modeling of input data as pixels rather than interconnected structures. In biological structures, however, organs are not separate entities; for example, in reality, a severed vessel is an indication of an underlying problem, but traditional segmentation models are not designed to strictly enforce the continuity of anatomy, potentially leading to inaccurate medical diagnoses. To address this issue, we propose a graph-based approach that enforces the continuity and connectivity of anatomical topology in medical images. Our method encodes the continuity of shapes as a graph constraint, ensuring that the network’s predictions maintain this continuity. We evaluate our method on two public benchmarks on retinal vessel segmentation, showing significant improvements in connectivity metrics compared to traditional methods while getting better or on-par performance on segmentation metrics.
Although purely transformer-based architectures showed promising performance in many computer vision tasks, many hybrid models consisting of CNN and transformer blocks are introduced to fit more specialized tasks. Nevertheless, despite the performance gain of both pure and hybrid transformer-based architectures compared to CNNs in medical imaging segmentation, their high training cost and complexity make it challenging to use them in real scenarios. In this work, we propose simple architectures based on purely convolutional layers, and show that by just taking advantage of the attention map visualizations obtained from a self-supervised pretrained vision transformer network (e.g., DINO) one can outperform complex transformer-based networks with much less computation costs. The proposed architecture is composed of two encoder branches with the original image as input in one branch and the attention map visualizations of the same image from multiple self-attention heads from a pre-trained DINO model (as multiple channels) in the other branch. The results of our experiments on two publicly available medical imaging datasets show that the proposed pipeline outperforms U-Net and the state-of-the-art medical image segmentation models.
Graph representation of objects and their relations in a scene, known as a scene graph, provides a precise and discernible interface to manipulate a scene by modifying the nodes or the edges in the graph. Although existing works have shown promising results in modifying the placement and pose of objects, scene manipulation often leads to losing some visual characteristics like the appearance or identity of objects. In this work, we propose DisPositioNet, a model that learns a disentangled representation for each object for the task of image manipulation using scene graphs in a self-supervised manner. Our framework enables the disentanglement of the variational latent embeddings as well as the feature representation in the graph. In addition to producing more realistic images due to the decomposition of features like pose and identity, our method takes advantage of the probabilistic sampling in the intermediate features to generate more diverse images in object replacement or addition tasks. The results of our experiments show that disentangling the feature representations in the latent manifold of the model outperforms the previous works qualitatively and quantitatively on two public benchmarks.
The lack of sufficient annotated image data is a common issue in medical image segmentation. For some organs and densities, the annotation may be scarce, leading to poor model training convergence, while other organs have plenty of annotated data. In this work, we present MetaMedSeg, a gradient-based meta-learning algorithm that redefines the meta-learning task for the volumetric medical data with the goal of capturing the variety between the slices. We also explore different weighting schemes for gradients aggregation, arguing that different tasks might have different complexity and hence, contribute differently to the initialization. We propose an importance-aware weighting scheme to train our model. In the experiments, we evaluate our method on the medical decathlon dataset by extracting 2D slices from CT and MRI volumes of different organs and performing semantic segmentation. The results show that our proposed volumetric task definition leads to up to improvement in terms of IoU compared to related baselines. The proposed update rule is also shown to improve the performance for complex scenarios where the data distribution of the target organ is very different from the source organs.
Federated learning (FL) is a distributed learning method that offers medical institutes the prospect of collaboration in a global model while preserving the privacy of their patients. Although most medical centers conduct similar medical imaging tasks, their differences, such as specializations, number of patients, and devices, lead to distinctive data distributions. Data heterogeneity poses a challenge for FL and the personalization of the local models. In this work, we investigate an adaptive hierarchical clustering method for FL to produce intermediate semi-global models, so clients with similar data distribution have the chance of forming a more specialized model. Our method forms several clusters consisting of clients with the most similar data distributions; then, each cluster continues to train separately. Inside the cluster, we use meta-learning to improve the personalization of the participants’ models. We compare the clustering approach with classical FedAvg and centralized training by evaluating our proposed methods on the HAM10k dataset for skin lesion classification with extreme heterogeneous data distribution. Our experiments demonstrate significant performance gain in heterogeneous distribution compared to standard FL methods in classification accuracy. Moreover, we show that the models converge faster if applied in clusters and outperform centralized training while using only a small subset of data.
Generative models allow for the creation of highly realistic artificial samples, opening up promising applications in medical imaging. In this work, we propose a multi-stage encoder-based approach to invert the generator of a generative adversarial network (GAN) for high resolution chest radiographs. This gives direct access to its implicitly formed latent space, makes generative models more accessible to researchers, and enables to apply generative techniques to actual patient’s images. We investigate various applications for this embedding, including image compression, disentanglement in the encoded dataset, guided image manipulation, and creation of stylized samples. We find that this type of GAN inversion is a promising research direction in the domain of chest radiograph modeling and opens up new ways to combine realistic X-ray sample synthesis with radiological image analysis.
Automated segmentation of retinal optical coherence tomography (OCT) images has become an important recent direction in machine learning for medical applications. We hypothesize that the anatomic structure of layers and their high-frequency variation in OCT images make retinal OCT a fitting choice for extracting spectral domain features and combining them with spatial domain features. In this work, we present Y-Net, an architecture that combines the frequency domain features with the image domain to improve the segmentation performance of OCT images. The results of this work demonstrate that the introduction of two branches, one for spectral and one for spatial domain features, brings very significant improvement in fluid segmentation performance and allows outperformance as compared to the well-known U-Net model. Our improvement was 13% on the fluid segmentation dice score and 1.9% on the average dice score. Finally, removing selected frequency ranges in the spectral domain demonstrates the impact of these features on the fluid segmentation outperformance.
Do black-box neural network models learn clinically relevant features for fracture diagnosis? The answer not only establishes reliability, quenches scientific curiosity, but also leads to explainable and verbose findings that can assist the radiologists in the final and increase trust. This work identifies the concepts networks use for vertebral fracture diagnosis in CT images. This is achieved by associating concepts to neurons highly correlated with a specific diagnosis in the dataset. The concepts are either associated with neurons by radiologists pre-hoc or are visualized during a specific prediction and left for the user’s interpretation. We evaluate which concepts lead to correct diagnosis and which concepts lead to false positives. The proposed frameworks and analysis pave the way for reliable and explainable vertebral fracture diagnosis.
One challenging property lurking in medical datasets is the imbalanced data distribution, where the frequency of the samples between the different classes is not balanced. Training a model on an imbalanced dataset can introduce unique challenges to the learning problem where a model is biased towards the highly frequent class. Many methods are proposed to tackle the distributional differences and the imbalanced problem. However, the impact of these approaches on the learned features is not well studied. In this paper, we look deeper into the internal units of neural networks to observe how handling data imbalance affects the learned features. We study several popular cost-sensitive approaches for handling data imbalance and analyze the feature maps of the convolutional neural networks from multiple perspectives: analyzing the alignment of salient features with pathologies and analyzing the pathology-related concepts encoded by the networks. Our study reveals differences and insights regarding the trained models that are not reflected by quantitative metrics such as AUROC and AP and show up only by looking at the models through a lens.
Inpainting has recently been proposed as a successful deep learning technique for unsupervised medical image model discovery. The masks used for inpainting are generally independent of the dataset and are not tailored to perform on different given classes of anatomy. In this work, we introduce a method for generating shape-aware masks for inpainting, which aims at learning the statistical shape prior. We hypothesize that although the variation of masks improves the generalizability of inpainting models, the shape of the masks should follow the topology of the organs of interest. Hence, we propose an unsupervised guided masking approach based on an off-the-shelf inpainting model and a superpixel over-segmentation algorithm to generate a wide range of shape-dependent masks. Experimental results on abdominal MR image reconstruction show the superiority of our proposed masking method over standard methods using square-shaped or dataset of irregular shape masks.
It is a mystery which input features contribute to a neural network’s output. Various explanation (feature attribution) methods are proposed in the literature to shed light on the problem. One peculiar observation is that these explanations (attributions) point to different features as being important. The phenomenon raises the question, which explanation to trust? We propose a framework for evaluating the explanations using the neural network model itself. The framework leverages the network to generate input features that impose a particular behavior on the output. Using the generated features, we devise controlled experimental setups to evaluate whether an explanation method conforms to an axiom. Thus we propose an empirical framework for axiomatic evaluation of explanation methods. We evaluate well-known and promising explanation solutions using the proposed framework. The framework provides a toolset to reveal properties and drawbacks within existing and future explanation solutions
The automation of chest X-ray reporting has garnered significant interest due to the time-consuming nature of the task. However, the clinical accuracy of free-text reports has proven challenging to quantify using natural language processing metrics, given the complexity of medical information, the variety of writing styles, and the potential for typos and inconsistencies. Structured reporting and standardized reports, on the other hand, can provide consistency and formalize the evaluation of clinical correctness. However, high-quality annotations for structured reporting are scarce. Therefore, we propose a method to predict clinical findings defined by sentences in structured reporting templates, which can be used to fill such templates. The approach involves training a contrastive language-image model using chest X-rays and related free-text radiological reports, then creating textual prompts for each structured finding and optimizing a classifier to predict clinical findings in the medical image. Results show that even with limited image-level annotations for training, the method can accomplish the structured reporting tasks of severity assessment of cardiomegaly and localizing pathologies in chest X-rays.
One principal approach for illuminating a black-box neural network is feature attribution, i.e. identifying the importance of input features for the network’s prediction. The predictive information of features is recently proposed as a proxy for the measure of their importance. So far, the predictive information is only identified for latent features by placing an information bottleneck within the network. We propose a method to identify features with predictive information in the input domain. The method results in fine-grained identification of input features’ information and is agnostic to network architecture. The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through. We compare our method with several feature attribution methods using mainstream feature attribution evaluation experiments. The code is publicly available.
Deep learning excels in the analysis of unstructured data and recent advancements allow to extend these techniques to survival analysis. In the context of clinical radiology, this enables, e.g., to relate unstructured volumetric images to a risk score or a prognosis of life expectancy and support clinical decision making. Medical applications are, however, associated with high criticality and consequently, neither medical personnel nor patients do usually accept black box models as reason or basis for decisions. Apart from averseness to new technologies, this is due to missing interpretability, transparency and accountability of many machine learning methods. We propose a hazard-regularized variational autoencoder that supports straightforward interpretation of deep neural architectures in the context of survival analysis, a field highly relevant in healthcare. We apply the proposed approach to abdominal CT scans of patients with liver tumors and their corresponding survival times.
The application of deep learning in survival analysis (SA) allows utilizing unstructured and high-dimensional data types uncommon in traditional survival methods. This allows to advance methods in fields such as digital health, predictive maintenance, and churn analysis, but often yields less interpretable and intuitively understandable models due to the black-box character of deep learning-based approaches. We close this gap by proposing 1) a multi-task variational autoencoder (VAE) with survival objective, yielding survival-oriented embeddings, and 2) a novel method HazardWalk that allows to model hazard factors in the original data space. HazardWalk transforms the latent distribution of our autoencoder into areas of maximized/minimized hazard and then uses the decoder to project changes to the original domain. Our procedure is evaluated on a simulated dataset as well as on a dataset of CT imaging data of patients with liver metastases.
Generation of images from scene graphs is a promising direction towards explicit scene generation and manipulation. However, the images generated from the scene graphs lack quality, which in part comes due to high difficulty and diversity in the data. We propose MIGS (Meta Image Generation from Scene Graphs), a meta-learning based approach for few-shot image generation from graphs that enables adapting the model to different scenes and increases the image quality by training on diverse sets of tasks. By sampling the data in a task-driven fashion, we train the generator using meta-learning on different sets of tasks that are categorized based on the scene attributes. Our results show that using this meta-learning approach for the generation of images from scene graphs achieves state-of-the-art performance in terms of image quality and capturing the semantic relationships in the scene.
Despite recent advancements in single-domain or single-object image generation, it is still challenging to generate complex scenes containing diverse, multiple objects and their interactions. Scene graphs, composed of nodes as objects and directed-edges as relationships among objects, offer an alternative representation of a scene that is more semantically grounded than images. We hypothesize that a generative model for scene graphs might be able to learn the underlying semantic structure of real-world scenes more effectively than images, and hence, generate realistic novel scenes in the form of scene graphs. In this work, we explore a new task for the unconditional generation of semantic scene graphs. We develop a deep auto-regressive model called SceneGraphGen which can directly learn the probability distribution over labelled and directed graphs using a hierarchical recurrent architecture. The model takes a seed object as input and generates a scene graph in a sequence of steps, each step generating an object node, followed by a sequence of relationship edges connecting to the previous nodes. We show that the scene graphs generated by SceneGraphGen are diverse and follow the semantic patterns of real-world scenes. Additionally, we demonstrate the application of the generated graphs in image synthesis, anomaly detection and scene graph completion.
Convolutional neural networks are showing promise in the automatic diagnosis of thoracic pathologies on chest x-rays. Their black-box nature has sparked many recent works to explain the prediction via input feature attribution methods (aka saliency methods). However, input feature attribution methods merely identify the importance of input regions for the prediction and lack semantic interpretation of model behavior. In this work, we first identify the semantics associated with internal units (feature maps) of the network. We proceed to investigate the following questions; Does a regression model that is only trained with COVID-19 severity scores implicitly learn visual patterns associated with thoracic pathologies? Does a network that is trained on weakly labeled data (e.g. healthy, unhealthy) implicitly learn pathologies? Moreover, we investigate the effect of pretraining and data imbalance on the interpretability of learned features. In addition to the analysis, we propose semantic attribution to semantically explain each prediction. We present our findings using publicly available chest pathologies (CheXpert [5], NIH ChestX-ray8 [25]) and COVID-19 datasets (BrixIA [20], and COVID-19 chest X-ray segmentation dataset [4]).
Neural networks have demonstrated remarkable performance in classification and regression tasks on chest X-rays. In order to establish trust in the clinical routine, the networks’ prediction mechanism needs to be interpretable. One principal approach to interpretation is feature attribution. Feature attribution methods identify the importance of input features for the output prediction. Building on Information Bottleneck Attribution (IBA) method, for each prediction we identify the chest X-ray regions that have high mutual information with the network’s output. Original IBA identifies input regions that have sufficient predictive information. We propose Inverse IBA to identify all informative regions. Thus all predictive cues for pathologies are highlighted on the X-rays, a desirable property for chest X-ray diagnosis. Moreover, we propose Regression IBA for explaining regression models. Using Regression IBA we observe that a model trained on cumulative severity score labels implicitly learns the severity of different X-ray regions. Finally, we propose Multi-layer IBA to generate higher resolution and more detailed attribution/saliency maps. We evaluate our methods using both human-centric (ground-truth-based) interpretability metrics, and human-agnostic feature importance metrics on NIH Chest X-ray8 and BrixIA datasets.
Background: Yttrium-90 radioembolization (RE) plays an important role in the treatment of liver malignancies. Optimal patient selection is crucial for an effective and safe treatment. In this study, we aim to validate the prognostic performance of a previously established random survival forest (RSF) with an external validation cohort from a different national center. Furthermore, we compare outcome prediction models with different established metrics. Methods: A previously established RSF model, trained on a consecutive cohort of 366 patients who had received RE due to primary or secondary liver tumor at a national center (center 1), was used to predict the outcome of an independent consecutive cohort of 202 patients from a different national center (center 2) and vice versa. Prognostic performance was evaluated using the concordance index (C-index) and the integrated Brier score (IBS). The prognostic importance of designated baseline parameters was measured with the minimal depth concept, and the influence on the predicted outcome was analyzed with accumulated local effects plots. RSF values were compared to conventional cox proportional hazards models in terms of C-index and IBS. Results: The established RSF model achieved a C-index of 0.67 for center 2, comparable to the results obtained for center 1, which it was trained on (0.66). The RSF model trained on center 2 achieved a C-index of 0.68 on center 2 data and 0.66 on center 1 data. CPH models showed comparable results on both cohorts, with C-index ranging from 0.68 to 0.72. IBS validation showed more differentiated results depending on which cohort was trained on and which cohort was predicted (range: 0.08 to 0.20). Baseline cholinesterase was the most important variable for survival prediction. Conclusion: The previously developed predictive RSF model was successfully validated with an independent external cohort. C-index and IBS are suitable metrics to compare outcome prediction models, with IBS showing more differentiated results. The findings corroborate that survival after RE is critically determined by functional hepatic reserve and thus baseline liver function should play a key role in patient selection.
Is critical input information encoded in specific sparse pathways within the neural network? In this work, we discuss the problem of identifying these critical pathways and subsequently leverage them for interpreting the network’s response to an input. The pruning objective — selecting the smallest group of neurons for which the response remains equivalent to the original network — has been previously proposed for identifying critical pathways. We demonstrate that sparse pathways derived from pruning do not necessarily encode critical input information. To ensure sparse pathways include critical fragments of the encoded input information, we propose pathway selection via neurons’ contribution to the response. We proceed to explain how critical pathways can reveal critical input features. We prove that pathways selected via neuron contribution are locally linear (in an ℓ 2 -ball), a property that we use for proposing a feature attribution method: ‘pathway gradient’. We validate our interpretation method using mainstream evaluation experiments. The validation of pathway gradient interpretation method further confirms that selected pathways using neuron contributions correspond to critical input features. The code 1 2 is publicly available.
We propose a versatile framework for survival analysis that combines advanced concepts from statistics with deep learning. The presented framework is based on piecewise expo-nential models and thereby supports various survival tasks, such as competing risks and multi-state modeling, and further allows for estimation of time-varying effects and time-varying features. To also include multiple data sources and higher-order interaction effects into the model, we embed the model class in a neural network and thereby enable the si-multaneous estimation of both inherently interpretable structured regression inputs as well as deep neural network components which can potentially process additional unstructured data sources. A proof of concept is provided by using the framework to predict Alzheimer’s disease progression based on tabular and 3D point cloud data and applying it to synthetic data.
Segmentation of Multiple Sclerosis (MS) lesions in longitudinal brain MR scans is performed for monitoring the progression of MS lesions. We hypothesize that the spatio-temporal cues in longitudinal data can aid the segmentation algorithm. Therefore, we propose a multi-task learning approach by defining an auxiliary self-supervised task of deformable registration between two time-points to guide the neural network toward learning from spatio-temporal changes. We show the efficacy of our method on a clinical dataset comprised of 70 patients with one follow-up study for each patient. Our results show that spatio-temporal information in longitudinal data is a beneficial cue for improving segmentation. We improve the result of current state-of-the-art by 2.6% in terms of overall score (p < 0.05).
Federated learning (FL) has been a promising approach in the field of medical imaging in recent years. A critical problem in FL, specifically in medical scenarios is to have a more accurate shared model which is robust to noisy and out-of distribution clients. In this work, we tackle the problem of statistical heterogeneity in data for FL which is highly plausible in medical data where for example the data comes from different sites with different scanner settings. We propose IDA (Inverse Distance Aggregation), a novel adaptive weighting approach for clients based on meta-information which handles unbalanced and non-iid data. We extensively analyze and evaluate our method against the well-known FL approach, Federated Averaging as a baseline.
MCML focuses on crucial issues in Biology and Biomedicine, addressing AI challenges such as liability, black-box behavior, and privacy. The goals include advancing personalized healthcare and fostering collaboration between algorithms and human experts. Additionally, MCML aims to be a key training hub for the next generation of AI-empowered professionals in medical and biological fields.
Learning disentangled representations from unlabelled data is a fundamental challenge in machine learning. Solving it may unlock other problems, such as generalization, interpretability, or fairness. Although remarkably challenging to solve in theory, disentanglement is often achieved in practice through prior matching. Furthermore, recent works have shown that prior matching approaches can be enhanced by leveraging geometrical considerations, e.g., by learning representations that preserve geometric features of the data, such as distances or angles between points. However, matching the prior while preserving geometric features is challenging, as a mapping that fully preserves these features while aligning the data distribution with the prior does not exist in general. To address these challenges, we introduce a novel approach to disentangled representation learning based on quadratic optimal transport. We formulate the problem using Gromov-Monge maps that transport one distribution onto another with minimal distortion of predefined geometric features, preserving them as much as can be achieved. To compute such maps, we propose the Gromov-Monge-Gap (GMG), a regularizer quantifying whether a map moves a reference distribution with minimal geometry distortion. We demonstrate the effectiveness of our approach for disentanglement across four standard benchmarks, outperforming other methods leveraging geometric considerations.
In optimal transport (OT), a Monge map is known as a mapping that transports a source distribution to a target distribution in the most cost-efficient way. Recently, multiple neural estimators for Monge maps have been developed and applied in diverse unpaired domain translation tasks, e.g. in single-cell biology and computer vision. However, the classic OT framework enforces mass conservation, which makes it prone to outliers and limits its applicability in real-world scenarios. The latter can be particularly harmful in OT domain translation tasks, where the relative position of a sample within a distribution is explicitly taken into account. While unbalanced OT tackles this challenge in the discrete setting, its integration into neural Monge map estimators has received limited attention. We propose a theoretically grounded method to incorporate unbalancedness into any Monge map estimator. We improve existing estimators to model cell trajectories over time and to predict cellular responses to perturbations. Moreover, our approach seamlessly integrates with the OT flow matching (OT-FM) framework. While we show that OT-FM performs competitively in image translation, we further improve performance by incorporating unbalancedness (UOT-FM), which better preserves relevant features. We hence establish UOT-FM as a principled method for unpaired image translation.
Functional gene embeddings, numerical vectors capturing gene function, provide a promising way to integrate functional gene information into machine learning models. These embeddings are learnt by applying self-supervised machine-learning algorithms on various data types including quantitative omics measurements, protein–protein interaction networks and literature. However, downstream evaluations comparing alternative data modalities used to construct functional gene embeddings have been lacking. Here we benchmarked functional gene embeddings obtained from various data modalities for predicting disease-gene lists, cancer drivers, phenotype–gene associations and scores from genome-wide association studies. Off-the-shelf predictors trained on precomputed embeddings matched or outperformed dedicated state-of-the-art predictors, demonstrating their high utility. Embeddings based on literature and protein–protein interactions inferred from low-throughput experiments outperformed embeddings derived from genome-wide experimental data (transcriptomics, deletion screens and protein sequence) when predicting curated gene lists. In contrast, they did not perform better when predicting genome-wide association signals and were biased towards highly-studied genes. These results indicate that embeddings derived from literature and low-throughput experiments appear favourable in many existing benchmarks because they are biased towards well-studied genes and should therefore be considered with caution. Altogether, our study and precomputed embeddings will facilitate the development of machine-learning models in genetics and related fields.
Deep neural networks (DNNs) enable learning from various data modalities, such as images or text. This concept has also found its way into statistical modelling through the use of semi-structured regression, a model additively combining structured predictors with unstructured effects from arbitrary data modalities learned through a DNN. This paper introduces a new framework called sparse modality regression (SMR). SMR is a regression model combining different data modalities and uses a group lasso-type regularization approach to perform modality selection by zeroing out potentially uninformative modalities.
We present a framework for smooth optimization of explicitly regularized objectives for (structured) sparsity. These non-smooth and possibly non-convex problems typically rely on solvers tailored to specific models and regularizers. In contrast, our method enables fully differentiable and approximation-free optimization and is thus compatible with the ubiquitous gradient descent paradigm in deep learning. The proposed optimization transfer comprises an overparameterization of selected parameters and a change of penalties. In the overparametrized problem, smooth surrogate regularization induces non-smooth, sparse regularization in the base parametrization. We prove that the surrogate objective is equivalent in the sense that it not only has identical global minima but also matching local minima, thereby avoiding the introduction of spurious solutions. Additionally, our theory establishes results of independent interest regarding matching local minima for arbitrary, potentially unregularized, objectives. We comprehensively review sparsity-inducing parametrizations across different fields that are covered by our general theory, extend their scope, and propose improvements in several aspects. Numerical experiments further demonstrate the correctness and effectiveness of our approach on several sparse learning problems ranging from high-dimensional regression to sparse neural network training.
Background: The rise of large-scale multi-species genome sequencing projects promises to shed new light on how genomes encode gene regulatory instructions. To this end, new algorithms are needed that can leverage conservation to capture regulatory elements while accounting for their evolution.
Results: Here, we introduce species-aware DNA language models, which we trained on more than 800 species spanning over 500 million years of evolution. Investigating their ability to predict masked nucleotides from context, we show that DNA language models distinguish transcription factor and RNA-binding protein motifs from background non-coding sequence. Owing to their flexibility, DNA language models capture conserved regulatory elements over much further evolutionary distances than sequence alignment would allow. Remarkably, DNA language models reconstruct motif instances bound in vivo better than unbound ones and account for the evolution of motif sequences and their positional constraints, showing that these models capture functional high-order sequence and evolutionary context. We further show that species-aware training yields improved sequence representations for endogenous and MPRA-based gene expression prediction, as well as motif discovery.
Conclusions: Collectively, these results demonstrate that species-aware DNA language models are a powerful, flexible, and scalable tool to integrate information from large compendia of highly diverged genomes.
Models of intercellular communication in tissues are based on molecular profiles of dissociated cells, are limited to receptor–ligand signaling and ignore spatial proximity in situ. We present node-centric expression modeling, a method based on graph neural networks that estimates the effects of niche composition on gene expression in an unbiased manner from spatial molecular profiling data. We recover signatures of molecular processes known to underlie cell communication.
Recent advances in single-cell technologies have enabled high-throughput molecular profiling of cells across modalities and locations. Single-cell transcriptomics data can now be complemented by chromatin accessibility, surface protein expression, adaptive immune receptor repertoire profiling and spatial information. The increasing availability of single-cell data across modalities has motivated the development of novel computational methods to help analysts derive biological insights. As the field grows, it becomes increasingly difficult to navigate the vast landscape of tools and analysis steps. Here, we summarize independent benchmarking studies of unimodal and multimodal single-cell analysis across modalities to suggest comprehensive best-practice workflows for the most common analysis steps. Where independent benchmarks are not available, we review and contrast popular methods. Our article serves as an entry point for novices in the field of single-cell (multi-)omic analysis and guides advanced users to the most recent best practices.
In recent years, unsupervised analysis of microbiome data, such as microbial network analysis and clustering, has increased in popularity. Many new statistical and computational methods have been proposed for these tasks. This multiplicity of analysis strategies poses a challenge for researchers, who are often unsure which method(s) to use and might be tempted to try different methods on their dataset to look for the “best” ones. However, if only the best results are selectively reported, this may cause over-optimism: the “best” method is overly fitted to the specific dataset, and the results might be non-replicable on validation data. Such effects will ultimately hinder research progress. Yet so far, these topics have been given little attention in the context of unsupervised microbiome analysis. In our illustrative study, we aim to quantify over-optimism effects in this context. We model the approach of a hypothetical microbiome researcher who undertakes four unsupervised research tasks: clustering of bacterial genera, hub detection in microbial networks, differential microbial network analysis, and clustering of samples. While these tasks are unsupervised, the researcher might still have certain expectations as to what constitutes interesting results. We translate these expectations into concrete evaluation criteria that the hypothetical researcher might want to optimize. We then randomly split an exemplary dataset from the American Gut Project into discovery and validation sets multiple times. For each research task, multiple method combinations (e.g., methods for data normalization, network generation, and/or clustering) are tried on the discovery data, and the combination that yields the best result according to the evaluation criterion is chosen. While the hypothetical researcher might only report this result, we also apply the “best” method combination to the validation dataset. The results are then compared between discovery and validation data. In all four research tasks, there are notable over-optimism effects; the results on the validation data set are worse compared to the discovery data, averaged over multiple random splits into discovery/validation data. Our study thus highlights the importance of validation and replication in microbiome analysis to obtain reliable results and demonstrates that the issue of over-optimism goes beyond the context of statistical testing and fishing for significance.
Theresa Ullmann
Dr.
Biometry in Molecular Medicine
Background: Codon optimality is a major determinant of mRNA translation and degradation rates. However, whether and through which mechanisms its effects are regulated remains poorly understood.
Results: Here we show that codon optimality associates with up to 2-fold change in mRNA stability variations between human tissues, and that its effect is attenuated in tissues with high energy metabolism and amplifies with age. Biochemical modeling and perturbation data through oxygen deprivation and ATP synthesis inhibition reveal that cellular energy variations non-uniformly affect the decoding kinetics of different codons.
Conclusions: This new mechanism of codon effect regulation, independent of tRNA regulation, provides a fundamental mechanistic link between cellular energy metabolism and eukaryotic gene expression.
Single-cell transcriptomics enabled the study of cellular heterogeneity in response to perturbations at the resolution of individual cells. However, scaling high-throughput screens (HTSs) to measure cellular responses for many drugs remains a challenge due to technical limitations and, more importantly, the cost of such multiplexed experiments. Thus, transferring information from routinely performed bulk RNA HTS is required to enrich single-cell data meaningfully.We introduce chemCPA, a new encoder-decoder architecture to study the perturbational effects of unseen drugs. We combine the model with an architecture surgery for transfer learning and demonstrate how training on existing bulk RNA HTS datasets can improve generalisation performance. Better generalisation reduces the need for extensive and costly screens at single-cell resolution. We envision that our proposed method will facilitate more efficient experiment designs through its ability to generate in-silico hypotheses, ultimately accelerating drug discovery.
Recommender Systems (RS) pervade many aspects of our everyday digital life. Proposed to work at scale, state-of-the-art RS allow the modeling of thousands of interactions and facilitate highly individualized recommendations. Conceptually, many RS can be viewed as instances of statistical regression models that incorporate complex feature effects and potentially non-Gaussian outcomes. Such structured regression models, including time-aware varying coefficients models, are, however, limited in their applicability to categorical effects and inclusion of a large number of interactions. Here, we propose Factorized Structured Regression (FaStR) for scalable varying coefficient models. FaStR overcomes limitations of general regression models for large-scale data by combining structured additive regression and factorization approaches in a neural network-based model implementation. This fusion provides a scalable framework for the estimation of statistical models in previously infeasible data settings. Empirical results confirm that the estimation of varying coefficients of our approach is on par with state-of-the-art regression techniques, while scaling notably better and also being competitive with other time-aware RS in terms of prediction performance. We illustrate FaStR’s performance and interpretability on a large-scale behavioral study with smartphone user data.
Large single-cell atlases are now routinely generated to serve as references for analysis of smaller-scale studies. Yet learning from reference data is complicated by batch effects between datasets, limited availability of computational resources and sharing restrictions on raw data. Here we introduce a deep learning strategy for mapping query datasets on top of a reference called single-cell architectural surgery (scArches). scArches uses transfer learning and parameter optimization to enable efficient, decentralized, iterative reference building and contextualization of new datasets with existing references without sharing raw data. Using examples from mouse brain, pancreas, immune and whole-organism atlases, we show that scArches preserves biological state information while removing batch effects, despite using four orders of magnitude fewer parameters than de novo integration. scArches generalizes to multimodal reference mapping, allowing imputation of missing modalities. Finally, scArches retains coronavirus disease 2019 (COVID-19) disease variation when mapping to a healthy reference, enabling the discovery of disease-specific cell states. scArches will facilitate collaborative projects by enabling iterative construction, updating, sharing and efficient use of reference atlases.
Computational trajectory inference enables the reconstruction of cell state dynamics from single-cell RNA sequencing experiments. However, trajectory inference requires that the direction of a biological process is known, largely limiting its application to differentiating systems in normal development. Here, we present CellRank (https://cellrank.org) for single-cell fate mapping in diverse scenarios, including regeneration, reprogramming and disease, for which direction is unknown. Our approach combines the robustness of trajectory inference with directional information from RNA velocity, taking into account the gradual and stochastic nature of cellular fate decisions, as well as uncertainty in velocity vectors. On pancreas development data, CellRank automatically detects initial, intermediate and terminal populations, predicts fate potentials and visualizes continuous gene expression trends along individual lineages. Applied to lineage-traced cellular reprogramming data, predicted fate probabilities correctly recover reprogramming outcomes. CellRank also predicts a new dedifferentiation trajectory during postinjury lung regeneration, including previously unknown intermediate cell states, which we confirm experimentally.
Tissue niches are sources of cellular variation and key to understanding both single-cell and tissue phenotypes. The interaction of a cell with its niche can be described through cell communication events. These events cannot be directly observed in molecular profiling assays of single cells and have to be inferred. However, computational models of cell communication and variance attribution defined on data from dissociated tissues suffer from multiple limitations with respect to their ability to define and to identify communication events. We address these limitations using spatial molecular profiling data with node-centric expression modeling (NCEM), a computational method based on graph neural networks which reconciles variance attribution and communication modeling in a single model of tissue niches. We use these models in varying complexity across spatial assays, such as immunohistochemistry and MERFISH, and biological systems to demonstrate that the statistical cell–cell dependencies discovered by NCEM are plausible signatures of known molecular processes underlying cell communication. We identify principles of tissue organisation as cell communication events across multiple datasets using interpretation mechanisms. In the primary motor cortex, we found gene expression variation that is due to niche composition variation across cortical depth. Using the same approach, we also identified niche-dependent cell state variation in CD8 T cells from inflamed colon and colorectal cancer. Finally, we show that NCEMs can be extended to mixed models of explicit cell communication events and latent intrinsic sources of variation in conditional variational autoencoders to yield holistic models of cellular variation in spatial molecular profiling data. Altogether, this graphical model of cellular niches is a step towards understanding emergent tissue phenotypes.
Recent advances in multiplexed single-cell transcriptomics experiments are facilitating the high-throughput study of drug and genetic perturbations. However, an exhaustive exploration of the combinatorial perturbation space is experimentally unfeasible, so computational methods are needed to predict, interpret, and prioritize perturbations. Here, we present the compositional perturbation autoencoder (CPA), which combines the interpretability of linear models with the flexibility of deep-learning approaches for single-cell response modeling. CPA encodes and learns transcriptional drug responses across different cell type, dose, and drug combinations. The model produces easy-to-interpret embeddings for drugs and cell types, which enables drug similarity analysis and predictions for unseen dosage and drug combinations. We show that CPA accurately models single-cell perturbations across compounds, doses, species, and time. We further demonstrate that CPA predicts combinatorial genetic interactions of several types, implying that it captures features that distinguish different interaction programs. Finally, we demonstrate that CPA can generate in-silico 5,329 missing genetic combination perturbations (97.6% of all possibilities) with diverse genetic interactions. We envision our model will facilitate efficient experimental design and hypothesis generation by enabling in-silico response prediction at the single-cell level, and thus accelerate therapeutic applications using single-cell technologies.
Large single-cell atlases are now routinely generated with the aim of serving as reference to analyse future smaller-scale studies. Yet, learning from reference data is complicated by batch effects between datasets, limited availability of computational resources, and sharing restrictions on raw data. Leveraging advances in machine learning, we propose a deep learning strategy to map query datasets on top of a reference called single-cell architectural surgery (scArches, https://github.com/theislab/scarches). It uses transfer learning and parameter optimization to enable efficient, decentralized, iterative reference building, and the contextualization of new datasets with existing references without sharing raw data. Using examples from mouse brain, pancreas, and whole organism atlases, we showcase that scArches preserves nuanced biological state information while removing batch effects in the data, despite using four orders of magnitude fewer parameters compared to de novo integration. To demonstrate mapping disease variation, we show that scArches preserves detailed COVID-19 disease variation upon reference mapping, enabling discovery of new cell identities that are unseen during training. We envision our method to facilitate collaborative projects by enabling the iterative construction, updating, sharing, and efficient use of reference atlases.
Geoinformation from Earth Observation satellite data is vital for addressing societal challenges. The research focus at MCML in this area is on tailoring data science and ML for geo-relevant applications. This includes physics-aware ML, uncertainty quantification, explainable geoinformation retrieval, Quantum ML for a digital twin of the Earth, and ethical considerations in ML for Earth Observation.
Earth Observation (EO) data analysis has been significantly revolutionized by deep learning (DL), with applications typically limited to grid-like data structures. Graph Neural Networks (GNNs) emerge as an important innovation, propelling DL into the non-Euclidean domain. Naturally, GNNs can effectively tackle the challenges posed by diverse modalities, multiple sensors, and the heterogeneous nature of EO data. To introduce GNNs in the related domains, our review begins by offering fundamental knowledge on GNNs. Then, we summarize the generic problems in EO, to which GNNs can offer potential solutions. Following this, we explore a broad spectrum of GNNs’ applications to scientific problems in Earth systems, covering areas such as weather and climate analysis, disaster management, air quality monitoring, agriculture, land cover classification, hydrological process modeling, and urban modeling. The rationale behind adopting GNNs in these fields is explained, alongside methodologies for organizing graphs and designing favorable architectures for various tasks. Furthermore, we highlight methodological challenges of implementing GNNs in these domains and possible solutions that could guide future research. While acknowledging that GNNs are not a universal solution, we conclude the paper by comparing them with other popular architectures like transformers and analyzing their potential synergies.
Making inferences about physical properties of the Universe requires knowledge of the data likelihood. A Gaussian distribution is commonly assumed for the uncertainties with a covariance matrix estimated from a set of simulations. The noise in such covariance estimates causes two problems: it distorts the width of the parameter contours, and it adds scatter to the location of those contours which is not captured by the widths themselves. For non-Gaussian likelihoods, an approximation may be derived via Simulation-Based Inference (SBI). It is often implicitly assumed that parameter constraints from SBI analyses, which do not use covariance matrices, are not affected by the same problems as parameter estimation with a covariance matrix estimated from simulations. We investigate whether SBI suffers from effects similar to those of covariance estimation in Gaussian likelihoods. We use Neural Posterior and Likelihood Estimation with continuous and masked autoregressive normalizing flows for density estimation. We fit our approximate posterior models to simulations drawn from a Gaussian linear model, so that the SBI result can be compared to the true posterior. We test linear and neural network based compression, demonstrating that neither methods circumvent the issues of covariance estimation. SBI suffers an inflation of posterior variance that is equal or greater than the analytical result in covariance estimation for Gaussian likelihoods for the same number of simulations. The assumption that SBI requires a smaller number of simulations than covariance estimation for a Gaussian likelihood analysis is inaccurate. The limitations of traditional likelihood analysis with simulation-based covariance remain for SBI with a finite simulation budget. Despite these issues, we show that SBI correctly draws the true posterior contour given enough simulations.
Self-supervised learning guided by masked image modeling, such as masked autoencoder (MAE), has attracted wide attention for pretraining vision transformers in remote sensing. However, MAE tends to excessively focus on pixel details, limiting the model’s capacity for semantic understanding, particularly for noisy synthetic aperture radar (SAR) images. In this article, we explore spectral and spatial remote sensing image features as improved MAE-reconstruction targets. We first conduct a study on reconstructing various image features, all performing comparably well or better than raw pixels. Based on such observations, we propose feature guided MAE (FG-MAE): reconstructing a combination of histograms of oriented gradients (HOG) and normalized difference indices (NDI) for multispectral images, and reconstructing HOG for SAR images. Experimental results on three downstream tasks illustrate the effectiveness of FG-MAE with a particular boost for SAR imagery (e.g., up to 5% better than MAE on EuroSAT-SAR). Furthermore, we demonstrate the well-inherited scalability of FG-MAE and release a first series of pretrained vision transformers for medium-resolution SAR and multispectral images.
Automatically and rapidly understanding Earth’s surface is fundamental to our grasp of the living environment and informed decision-making. This underscores the need for a unified system with comprehensive capabilities in analyzing Earth’s surface to address a wide range of human needs. The emergence of multimodal large language models (MLLMs) has great potential in boosting the efficiency and convenience of intelligent Earth observation. These models can engage in human-like conversations, serve as unified platforms for understanding images, follow diverse instructions, and provide insightful feedbacks. In this study, we introduce LHRS-Bot-Nova, an MLLM specialized in understanding remote sensing (RS) images, designed to expertly perform a wide range of RS understanding tasks aligned with human instructions. LHRS-Bot-Nova features an enhanced vision encoder and a novel bridge layer, enabling efficient visual compression and better language-vision alignment. To further enhance RS-oriented vision-language alignment, we propose a large-scale RS image-caption dataset, generated through feature-guided image recaptioning. Additionally, we introduce an instruction dataset specifically designed to improve spatial recognition abilities. Extensive experiments demonstrate superior performance of LHRS-Bot-Nova across various RS image understanding tasks. We also evaluate different MLLM performances in complex RS perception and instruction following using a complicated multi-choice question evaluation benchmark, providing a reliable guide for future model selection and improvement.
Self-supervised pretraining on large-scale satellite data has raised great interest in building Earth observation (EO) foundation models. However, many important resources beyond pure satellite imagery, such as land-cover-land-use products that provide free global semantic information, as well as vision foundation models that hold strong knowledge of the natural world, are not widely studied. In this work, we show these free additional resources not only help resolve common contrastive learning bottlenecks but also significantly boost the efficiency and effectiveness of EO pretraining. Specifically, we first propose soft contrastive learning (SoftCon) that optimizes cross-scene soft similarity based on land-cover-generated multilabel supervision, naturally solving the issue of multiple positive samples and too strict positive matching in complex scenes. Second, we revisit and explore cross-domain continual pretraining for both multispectral and synthetic aperture radar (SAR) imagery, building efficient EO foundation models from strongest vision models such as DINOv2. Adapting simple weight-initialization and Siamese masking strategies into our SoftCon framework, we demonstrate impressive continual pretraining performance even when the input modalities are not aligned. Without prohibitive training, we produce multispectral and SAR foundation models that achieve significantly better results in 10 out of 11 downstream tasks than most existing SOTA models. For example, our ResNet50/ViT-S achieve 84.8/85.0 linear probing mAP scores on BigEarthNet-10%, which are better than most existing ViT-L models; under the same setting, our ViT-B sets a new record of 86.8 in multispectral, and 82.5 in SAR, the latter even better than many multispectral models.
Domain Generalization (DG) focuses on enhancing the generalization of deep learning models trained on multiple source domains to adapt to unseen target domains. This paper explores DG through the lens of bias-variance decomposition, uncovering that test errors in DG predominantly arise from cross-domain bias and variance. Inspired by this insight, we introduce a Representation Enhancement-Stabilization (RES) framework, comprising a Representation Enhancement (RE) module and a Representation Stabilization (RS) module. In RE, a novel set of feature frequency augmentation techniques is used to progressively reduce cross-domain bias during feature extraction. Furthermore, in RS, a novel Mutual Exponential Moving Average (MEMA) strategy is designed to stabilize model optimization for diminishing cross-domain variance during training. Collectively, the whole RES method can significantly enhance model generalization. We evaluate RES on five benchmark datasets and the results show that it outperforms multiple advanced DG methods.
The increasing availability of multi-sensor data sparks wide interest in multimodal self-supervised learning. However, most existing approaches learn only common representations across modalities while ignoring intra-modal training and modality-unique representations. We propose Decoupling Common and Unique Representations (DeCUR), a simple yet effective method for multimodal self-supervised learning. By distinguishing inter- and intra-modal embeddings through multimodal redundancy reduction, DeCUR can integrate complementary information across different modalities. We evaluate DeCUR in three common multimodal scenarios (radar-optical, RGB-elevation, and RGB-depth), and demonstrate its consistent improvement regardless of architectures and for both multimodal and modality-missing settings. With thorough experiments and comprehensive analysis, we hope this work can provide valuable insights and raise more interest in researching the hidden relationships of multimodal representations.
Exploiting machine learning techniques to automatically classify multispectral remote sensing imagery plays a significant role in deriving changes on the Earth’s surface. However, the computation power required to manage large Earth observation data and apply sophisticated machine learning models for this analysis purpose has become an intractable bottleneck. Leveraging quantum computing provides a possibility to tackle this challenge in the future. This article focuses on land cover classification by analyzing Sentinel-2 images with quantum computing. Two hybrid quantum-classical deep learning frameworks are proposed. Both models exploit quantum computing to extract features efficiently from multispectral images and classical computing for final classification. As proof of concept, numerical simulation results on the LCZ42 dataset through the TensorFlow Quantum platform verify our models’ validity. The experiments indicate that our models can extract features more effectively compared with their classical counterparts, specifically, the convolutional neural network (CNN) model. Our models demonstrated improvements, with an average test accuracy increase of 4.5% and 3.3%, respectively, in comparison to the CNN model. In addition, our proposed models exhibit better transferability and robustness than CNN models.
Monocular height estimation (MHE) is key for generating 3-D city models, essential for swift disaster response. Moving beyond the traditional focus on performance enhancement, our study breaks new ground by probing the interpretability of MHE networks. We have pioneeringly discovered that neurons within MHE models demonstrate selectivity for both height and semantic classes. This insight sheds light on the complex inner workings of MHE models and inspires innovative strategies for leveraging elevation data more effectively. Informed by this insight, we propose a pioneering framework that employs MHE as a self-supervised pretraining method for remote sensing (RS) imagery. This approach significantly enhances the performance of semantic segmentation tasks. Furthermore, we develop a disentangled latent transformer (DLT) module that leverages explainable deep representations from pretrained MHE networks for unsupervised semantic segmentation. Our method demonstrates the significant potential of MHE tasks in developing foundation models for sophisticated pixel-level semantic analyses. Additionally, we present a new dataset designed to benchmark the performance of both semantic segmentation and height estimation tasks.
Change detection (CD) from remote sensing (RS) images using deep learning has been widely investigated in the literature. It is typically regarded as a pixelwise labeling task that aims to classify each pixel as changed or unchanged. Although per-pixel classification networks in encoder-decoder structures have shown dominance, they still suffer from imprecise boundaries and incomplete object delineation at various scenes. For high-resolution RS images, partly or totally changed objects are more worthy of attention rather than a single pixel. Therefore, we revisit the CD task from the mask prediction and classification perspective and propose mask classification-based CD (MaskCD) to detect changed areas by adaptively generating categorized masks from input image pairs. Specifically, it utilizes a cross-level change representation perceiver (CLCRP) to learn multiscale change-aware representations and capture spatiotemporal relations from encoded features by exploiting deformable multihead self-attention (DeformMHSA). Subsequently, a masked cross-attention-based detection transformers (MCA-DETRs) decoder is developed to accurately locate and identify changed objects based on masked cross-attention and self-attention (SA) mechanisms. It reconstructs the desired changed objects by decoding the pixelwise representations into learnable mask proposals and making final predictions from these candidates. Experimental results on five benchmark datasets demonstrate the proposed approach outperforms other state-of-the-art models.
Urban land cover classification aims to derive crucial information from earth observation data and categorize it into specific land uses. To achieve accurate classification, sophisticated machine learning models trained with large earth observation data are employed, but the required computation power has become a bottleneck. Quantum computing might tackle this challenge in the future. However, representing images into quantum states for analysis with quantum computing is challenging due to the high demand for quantum resources. To tackle this challenge, we propose a hybrid quantum neural network that can effectively represent and classify remote sensing imagery with reduced quantum resources. Our model was evaluated on the Local Climate Zone (LCZ)-based land cover classification task using the TensorFlow Quantum platform, and the experimental results indicate its validity for accurate urban land cover classification.
Predicting socioeconomic indicators from satellite imagery with deep learning has become an increasingly popular research direction. Post-hoc concept-based explanations can be an important step towards broader adoption of these models in policy-making as they enable the interpretation of socioeconomic outcomes based on visual concepts that are intuitive to humans. In this paper, we study the interplay between representation learning using an additional task-specific contrastive loss and post-hoc concept explainability for socioeconomic studies. Our results on two different geographical locations and tasks indicate that the task-specific pretraining imposes a continuous ordering of the latent space embeddings according to the socioeconomic outcomes. This improves the model’s interpretability as it enables the latent space of the model to associate urban concepts with continuous intervals of socioeconomic outcomes. Further, we illustrate how analyzing the model’s conceptual sensitivity for the intervals of socioeconomic outcomes can shed light on new insights for urban studies.
Compared to supervised deep learning, self-supervision provides remote sensing a tool to reduce the amount of exact, human-crafted geospatial annotations. While image-level information for unsupervised pretraining efficiently works for various classification downstream tasks, the performance on pixel-level semantic segmentation lags behind in terms of model accuracy. On the contrary, many easily available label sources (e.g., automatic labeling tools and land cover land use products) exist, which can provide a large amount of noisy labels for segmentation model training. In this work, we propose to exploit noisy semantic segmentation maps for model pretraining. Our experiments provide insights on robustness per network layer. The transfer learning settings test the cases when the pretrained encoders are fine-tuned for different label classes and decoders. The results from two datasets indicate the effectiveness of task-specific supervised pretraining with noisy labels. Our findings pave new avenues to improved model accuracy and novel pretraining strategies for efficient remote sensing image segmentation.
The vegetation height has been identified as a key biophysical parameter to justify the role of forests in the carbon cycle and ecosystem productivity. Therefore, consistent and large-scale forest height is essential for managing terrestrial ecosystems, mitigating climate change, and preventing biodiversity loss. Since spaceborne multispectral instruments, Light Detection and Ranging (LiDAR), and Synthetic Aperture Radar (SAR) have been widely used for large-scale earth observation for years, this paper explores the possibility of generating largescale and high-accuracy forest heights with the synergy of the Sentinel-1, Sentinel-2, and ICESat-2 data. A Forest Height Generative Adversarial Network (FH-GAN) is developed to retrieve forest height from Sentinel-1 and Sentinel-2 images sparsely supervised by the ICESat-2 data. This model is made up of a cascade forest height and coherence generator, where the output of the forest height generator is fed into the spatial discriminator to regularize spatial details, and the coherence generator is connected to a coherence discriminator to refine the vertical details. A progressive strategy further underpins the generator to boost the accuracy of multi-source forest height estimation. Results indicated that FH-GAN achieves the best RMSE of 2.10 m at a large scale compared with the LVIS reference and the best RMSE of 6.16 m compared with the ICESat-2 reference.
Urban development in South America has experienced significant growth and transformation over the past few decades. South America’s urban development and trees are closely interconnected, and tree cover within cities plays a vital role in shaping sustainable and resilient urban landscapes. However, knowledge of urban tree canopy (UTC) coverage in the South American continent remains limited. In this study, we used high-resolution satellite images and developed a semi-supervised deep learning method to create UTC data for 888 South American cities. The proposed semi-supervised method can leverage both labeled and unlabeled data during training. By incorporating labeled data for guidance and utilizing unlabeled data to explore underlying patterns, the algorithm enhances model robustness and generalization for urban tree canopy detection across South America, with an average overall accuracy of 94.88% for the tested cities. Based on the created UTC products, we successfully assessed the UTC coverage for each city. Statistical results showed that the UTC coverage in South America is between 0.76% and 69.53%, and the average UTC coverage is approximately 19.99%. Among the 888 cities, only 357 cities that accommodate approximately 48.25% of the total population have UTC coverage greater than 20%, while the remaining 531 cities that accommodate approximately 51.75% of the total population have UTC coverage less than 20%. Natural factors (climatic and geographical) play a very important role in determining UTC coverage, followed by human activity factors (economy and urbanization level). We expect that the findings of this study and the created UTC dataset will help formulate policies and strategies to promote sustainable urban forestry, thus further improving the quality of life of residents in South America.
We study the potential of noisy labels y to pretrain semantic segmentation models in a multi-modal learning framework for geospatial applications. Specifically, we propose a novel Cross-modal Sample Selection method (CromSS) that utilizes the class distributions P^{(d)}(x,c) over pixels x and classes c modelled by multiple sensors/modalities d of a given geospatial scene. Consistency of predictions across sensors d is jointly informed by the entropy of P^{(d)}(x,c). Noisy label sampling we determine by the confidence of each sensor d in the noisy class label, P^{(d)}(x,c=y(x)). To verify the performance of our approach, we conduct experiments with Sentinel-1 (radar) and Sentinel-2 (optical) satellite imagery from the globally-sampled SSL4EO-S12 dataset. We pair those scenes with 9-class noisy labels sourced from the Google Dynamic World project for pretraining. Transfer learning evaluations (downstream task) on the DFC2020 dataset confirm the effectiveness of the proposed method for remote sensing image segmentation.
Uncertainty in machine learning models is a timely and vast field of research. In supervised learning, uncertainty can already occur in the first stage of the training process, the annotation phase. This scenario is particularly evident when some instances cannot be definitively classified. In other words, there is inevitable ambiguity in the annotation step and hence, not necessarily a ‘ground truth’ associated with each instance. The main idea of this work is to drop the assumption of a ground truth label and instead embed the annotations into a multidimensional space. This embedding is derived from the empirical distribution of annotations in a Bayesian setup, modeled via a Dirichlet-Multinomial framework. We estimate the model parameters and posteriors using a stochastic Expectation Maximization algorithm with Markov Chain Monte Carlo steps. The methods developed in this paper readily extend to various situations where multiple annotators independently label instances. To showcase the generality of the proposed approach, we apply our approach to three benchmark datasets for image classification and Natural Language Inference. Besides the embeddings, we can investigate the resulting correlation matrices, which reflect the semantic similarities of the original classes very well for all three exemplary datasets.
Foundation models have enormous potential in advancing Earth and climate sciences, however, current approaches may not be optimal as they focus on a few basic features of a desirable Earth and climate foundation model. Crafting the ideal Earth foundation model, we define eleven features which would allow such a foundation model to be beneficial for any geoscientific downstream application in an environmental- and human-centric this http URL further shed light on the way forward to achieve the ideal model and to evaluate Earth foundation models. What comes after foundation models? Energy efficient adaptation, adversarial defenses, and interpretability are among the emerging directions.
The quantification of predictive uncertainties helps to understand where the existing models struggle to find the correct prediction. A useful quality control tool is the task of detecting out-of-distribution (OOD) data by examining the model’s predictive uncertainty. For this task, deterministic single forward pass frameworks have recently been established as deep learning models and have shown competitive performance in certain tasks. The unique combination of spectrally normalized weight matrices and residual connection networks with an approximate Gaussian process (GP) output layer can here offer the best trade-off between performance and complexity. We utilize this framework with a refined version that adds spectral batch normalization and an inducing points approximation of the GP for the task of OOD detection in remote sensing image classification. This is an important task in the field of remote sensing, because it provides an evaluation of how reliable the model’s predictive uncertainty estimates are. By performing experiments on the benchmark datasets Eurosat and So2Sat LCZ42, we can show the effectiveness of the proposed adaptions to the residual networks (ResNets). Depending on the chosen dataset, the proposed methodology achieves OOD detection performance up to 16% higher than previously considered distance-aware networks. Compared with other uncertainty quantification methodologies, the results are on the same level and exceed them in certain experiments by up to 2%. In particular, spectral batch normalization, which normalizes the batched data as opposed to normalizing the network weights by the spectral normalization (SN), plays a crucial role and leads to performance gains of up to 3% in every single experiment.
The remarkable achievements of ChatGPT and Generative Pre-trained Transformer 4 (GPT-4) have sparked a wave of interest and research in the field of large language models (LLMs) for artificial general intelligence (AGI). These models provide intelligent solutions that are closer to human thinking, enabling us to use general artificial intelligence (AI) to solve problems in various applications. However, in the field of remote sensing (RS), the scientific literature on the implementation of AGI remains relatively scant. Existing AI-related research in RS focuses primarily on visual-understanding tasks while neglecting the semantic understanding of the objects and their relationships. This is where vision-LMs (VLMs) excel as they enable reasoning about images and their associated textual descriptions, allowing for a deeper understanding of the underlying semantics. VLMs can go beyond visual recognition of RS images and can model semantic relationships as well as generate natural language descriptions of the image. This makes them better suited for tasks that require both visual and textual understanding, such as image captioning and visual question answering (VQA). This article provides a comprehensive review of the research on VLMs in RS, summarizing the latest progress, highlighting current challenges, and identifying potential research opportunities. Specifically, we review the application of VLMs in mainstream RS tasks, including image captioning, text-based image generation, text-based image retrieval (TBIR), VQA, scene classification, semantic segmentation, and object detection. For each task, we analyze representative works and discuss research progress. Finally, we summarize the limitations of existing works and provide possible directions for future development. This review aims to provide a comprehensive overview of the current research progress of VLMs in RS (see Figure 1 ), and to inspire further research in this exciting and promising field.
Deep neural networks based on unrolled iterative algorithms have achieved remarkable success in sparse reconstruction applications, such as synthetic aperture radar (SAR) tomographic inversion (TomoSAR). However, the currently available deep learning-based TomoSAR algorithms are limited to 3-D reconstruction. The extension of deep learning-based algorithms to 4-D imaging, i.e., differential TomoSAR (D-TomoSAR) applications, is impeded mainly due to the high-dimensional weight matrices required by the network designed for D-TomoSAR inversion, which typically contain millions of freely trainable parameters. Learning such huge number of weights requires an enormous number of training samples, resulting in a large memory burden and excessive time consumption. To tackle this issue, we propose an efficient and accurate algorithm called HyperLISTA-ABT. The weights in HyperLISTA-ABT are determined in an analytical way according to a minimum coherence criterion, trimming the model down to an ultra-light one with only three hyperparameters. Additionally, HyperLISTA-ABT improves the global thresholding by utilizing an adaptive blockwise thresholding (ABT) scheme, which applies block-coordinate techniques and conducts thresholding in local blocks, so that weak expressions and local features can be retained in the shrinkage step layer by layer. Simulations were performed and demonstrated the effectiveness of our approach, showing that HyperLISTA-ABT achieves superior computational efficiency with no significant performance degradation compared to the state-of-the-art methods. Real data experiments showed that a high-quality 4-D point cloud could be reconstructed over a large area by the proposed HyperLISTA-ABT with affordable computational resources and in a fast time.
Trees in urban areas act as carbon sinks and provide ecosystem services for residents. However, the impact of urbanization on tree coverage in South America remains poorly understood. Here, we make use of very high resolution satellite imagery to derive urban tree coverage for 882 cities in South America and developed a tree coverage impacted (TCI) coefficient to quantify the direct and indirect impacts of urbanization on urban tree canopy (UTC) coverage. The direct effect refers to the change in tree cover due to the rise in urban intensity compared to scenarios with extremely low levels of urbanization, while the indirect impact refers to the change in tree coverage resulting from human management practices and alterations in urban environments. Our study revealed the negative direct impacts and prevalent positive indirect impacts of urbanization on UTC coverage. In South America, 841 cities exhibit positive indirect impacts, while only 41 cities show negative indirect impacts. The prevalent positive indirect effects can offset approximately 48% of the direct loss of tree coverage due to increased urban intensity, with full offsets achieved in Argentinian and arid regions of South America. In addition, human activity factors play the most important role in determining the indirect effects of urbanization on UTC coverage, followed by climatic and geographic factors. These findings will help us understand the impact of urbanization on UTC coverage along the urban intensity gradient and formulate policies and strategies to promote sustainable urban development in South America.
Understanding how buildings are distributed globally is crucial to revealing the human footprint on our home planet. This built environment affects local climate, land surface albedo, resource distribution, and many other key factors that influence well-being and human health. Despite this, quantitative and comprehensive data on the distribution and properties of buildings worldwide is lacking. To this end, by using a big data analytics approach and nearly 800,000 satellite images, we generated the highest resolution and highest accuracy building map ever created: the GlobalBuildingMap (GBM). A joint analysis of building maps and solar potentials indicates that rooftop solar energy can supply the global energy consumption need at a reasonable cost. Specifically, if solar panels were placed on the roofs of all buildings, they could supply 1.1-3.3 times – depending on the efficiency of the solar device – the global energy consumption in 2020, which is the year with the highest consumption on record. We also identified a clear geospatial correlation between building areas and key socioeconomic variables, which indicates our global building map can serve as an important input to modeling global socioeconomic needs and drivers.
In the remote sensing community, extracting buildings from remote sensing imagery has triggered great interest. While many studies have been conducted, a comprehensive review of these approaches that are applied to optical and synthetic aperture radar (SAR) imagery is still lacking. Therefore, we provide an in-depth review of both early efforts and recent advances, which are aimed at extracting geometrical structures or semantic attributes of buildings, including building footprint generation, building facade segmentation, roof segment and superstructure segmentation, building height retrieval, building-type classification, building change detection, and annotation data correction. Furthermore, a list of corresponding benchmark datasets is given. Finally, challenges and outlooks of existing approaches as well as promising applications are discussed to enhance comprehension within this realm of research.
Localizing desired objects from remote sensing images is of great use in practical applications. Referring image segmentation, which aims at segmenting out the objects to which a given expression refers, has been extensively studied in natural images. However, almost no research attention is given to this task of remote sensing imagery. Considering its potential for real-world applications, in this article, we introduce referring remote sensing image segmentation (RRSIS) to fill in this gap and make some insightful explorations. Specifically, we created a new dataset, called RefSegRS, for this task, enabling us to evaluate different methods. Afterward, we benchmark referring image segmentation methods of natural images on the RefSegRS dataset and find that these models show limited efficacy in detecting small and scattered objects. To alleviate this issue, we propose a language-guided cross-scale enhancement (LGCE) module that utilizes linguistic features to adaptively enhance multiscale visual features by integrating both deep and shallow features. The proposed dataset, benchmarking results, and the designed LGCE module provide insights into the design of a better RRSIS model.
The mass loss of glaciers outside the polar ice sheets has been accelerating during the past several decades and has been contributing to global sea-level rise. However, many of the mechanisms of this mass loss process are not well understood, especially the calving dynamics of marine-terminating glaciers, in part due to a lack of high-resolution calving front observations. Svalbard is an ideal site to study the climate sensitivity of glaciers as it is a region that has been undergoing amplified climate variability in both space and time compared to the global mean. Here we present a new high-resolution calving front dataset of 149 marine-terminating glaciers in Svalbard, comprising 124 919 glacier calving front positions during the period 1985–2023 (https://doi.org/10.5281/zenodo.10407266, Li et al., 2023). This dataset was generated using a novel automated deep-learning framework and multiple optical and SAR satellite images from Landsat, Terra-ASTER, Sentinel-2, and Sentinel-1 satellite missions. The overall calving front mapping uncertainty across Svalbard is 31 m. The newly derived calving front dataset agrees well with recent decadal calving front observations between 2000 and 2020 (Kochtitzky and Copland, 2022) and an annual calving front dataset between 2008 and 2022 (Moholdt et al., 2022). The calving fronts between our product and the latter deviate by 32±65m on average. The R2 of the glacier calving front change rates between these two products is 0.98, indicating an excellent match. Using this new calving front dataset, we identified widespread calving front retreats during the past four decades, across most regions in Svalbard except for a handful of glaciers draining the ice caps Vestfonna and Austfonna on Nordaustlandet. In addition, we identified complex patterns of glacier surging events overlaid with seasonal calving cycles. These data and findings provide insights into understanding glacier calving mechanisms and drivers. This new dataset can help improve estimates of glacier frontal ablation as a component of the integrated mass balance of marine-terminating glaciers.
In this article, we propose a multimodal co-learning framework for building change detection. This framework can be adopted to jointly train a Siamese bitemporal image network and a height difference (HDiff) network with labeled source data and unlabeled target data pairs. Three co-learning combinations (vanilla co-learning, fusion co-learning, and detached fusion co-learning) are proposed and investigated with two types of co-learning loss functions within our framework. Our experimental results demonstrate that the proposed methods are able to take advantage of unlabeled target data pairs and, therefore, enhance the performance of single-modal neural networks on the target data. In addition, our synthetic-to-real experiments demonstrate that the recently published synthetic dataset, Simulated Multimodal Aerial Remote Sensing (SMARS), is feasible to be used in real change detection scenarios, where the optimal result is with the F1 score of 79.29%.
In recent years, black-box machine learning approaches have become a dominant modeling paradigm for knowledge extraction in Remote Sensing. Despite the potential benefits of uncovering the inner workings of these models with explainable AI, a comprehensive overview summarizing the used explainable AI methods and their objectives, findings, and challenges in Remote Sensing applications is still missing. In this paper, we address this issue by performing a systematic review to identify the key trends of how explainable AI is used in Remote Sensing and shed light on novel explainable AI approaches and emerging directions that tackle specific Remote Sensing challenges. We also reveal the common patterns of explanation interpretation, discuss the extracted scientific insights in Remote Sensing, and reflect on the approaches used for explainable AI methods evaluation. Our review provides a complete summary of the state-of-the-art in the field. Further, we give a detailed outlook on the challenges and promising research directions, representing a basis for novel methodological development and a useful starting point for new researchers in the field of explainable AI in Remote Sensing.
Object detection (OD) is an essential and fundamental task in computer vision (CV) and satellite image processing. Existing deep learning methods have achieved impressive performance thanks to the availability of large-scale annotated datasets. Yet, in real-world applications, the availability of labels is limited. In this article, few-shot OD (FSOD) has emerged as a promising direction, which aims at enabling the model to detect novel objects with only few of them annotated. However, many existing FSOD algorithms overlook a critical issue: when an input image contains multiple novel objects and only a subset of them are annotated, the unlabeled objects will be considered as background during training. This can cause confusions and severely impact the model’s ability to recall novel objects. To address this issue, we propose a self-training-based FSOD (ST-FSOD) approach, which incorporates the self-training mechanism into the few-shot fine-tuning process. ST-FSOD aims to enable the discovery of novel objects that are not annotated and take them into account during training. On the one hand, we devise a two-branch region proposal networks (RPNs) to separate the proposal extraction of base and novel objects. On the another hand, we incorporate the student-teacher mechanism into RPN and the region-of-interest (RoI) head to include those highly confident yet unlabeled targets as pseudolabels. Experimental results demonstrate that our proposed method outperforms the state of the art in various FSOD settings by a large margin.
As extreme weather events become more frequent, understanding their impact on human health becomes increasingly crucial. However, the utilization of Earth Observation to effectively analyze the environmental context in relation to health remains limited. This limitation is primarily due to the lack of fine-grained spatial and temporal data in public and population health studies, hindering a comprehensive understanding of health outcomes. Additionally, obtaining appropriate environmental indices across different geographical levels and timeframes poses a challenge. For the years 2019 (pre-COVID) and 2020 (COVID), we collected spatio-temporal indicators for all Lower Layer Super Output Areas in England. These indicators included: i) 111 sociodemographic features linked to health in existing literature, ii) 43 environmental point features (e.g., greenery and air pollution levels), iii) 4 seasonal composite satellite images each with 11 bands, and iv) prescription prevalence associated with five medical conditions (depression, anxiety, diabetes, hypertension, and asthma), opioids and total prescriptions. We combined these indicators into a single MEDSAT dataset, the availability of which presents an opportunity for the machine learning community to develop new techniques specific to public health. These techniques would address challenges such as handling large and complex data volumes, performing effective feature engineering on environmental and sociodemographic factors, capturing spatial and temporal dependencies in the models, addressing imbalanced data distributions, developing novel computer vision methods for health modeling based on satellite imagery, ensuring model explainability, and achieving generalization beyond the specific geographical region.
Cloud removal (CR) is a significant and challenging problem in remote sensing, and in recent years, there have been notable advancements in this area. However, two major issues remain hindering the development of CR: the unavailability of high-resolution imagery for existing datasets and the absence of evaluation regarding the semantic meaningfulness of the generated structures. In this article, we introduce M3R-CR, a benchmark dataset for high-resolution CR with multimodal and multiresolution data fusion. M3R-CR is the first public dataset for CR to feature globally sampled high-resolution optical observations, paired with radar measurements and pixel-level land-cover annotations. With this dataset, we consider the problem of CR in high-resolution optical remote-sensing imagery by integrating multimodal and multiresolution information. In this context, we have to take into account the alignment errors caused by the multiresolution nature, along with the more pronounced misalignment issues in high-resolution images due to inherent imaging mechanism differences and other factors. Existing multimodal data fusion-based methods, which assume the image pairs are aligned accurately at the pixel level, are thus not appropriate for this problem. To this end, we design a new baseline named Align-CR to perform the low-resolution synthetic aperture radar (SAR) image-guided high-resolution optical image CR. It gradually warps and fuses the features of the multimodal and multiresolution data during the reconstruction process, effectively mitigating concerns associated with misalignment. In the experiments, we evaluate the performance of CR by analyzing the quality of visually pleasing textures using image reconstruction (IR) metrics and further analyze the generation of semantically meaningful structures using a well-established semantic segmentation task. The proposed Align-CR method is superior to other baseline methods in both areas.
Subtle volcanic deformations point to volcanic activities, and monitoring them helps predict eruptions. Today, it is possible to remotely detect volcanic deformation in mm/year scale thanks to advances in interferometric synthetic aperture radar (InSAR). This article proposes a framework based on a deep learning model to automatically discriminate subtle volcanic deformations from other deformation types in five-year-long InSAR stacks. Models are trained on a synthetic training set. To better understand and improve the models, explainable artificial intelligence (AI) analyses are performed. In initial models, Gradient-weighted Class Activation Mapping (Grad-CAM) linked new-found patterns of slope processes and salt lake deformations to false-positive detections. The models are then improved by fine-tuning (FT) with a hybrid synthetic-real data, and additional performance is extracted by low-pass spatial filtering (LSF) of the real test set. The t-distributed stochastic neighbor embedding (t-SNE) latent feature visualization confirmed the similarity and shortcomings of the FT set, highlighting the problem of elevation components in residual tropospheric noise. After fine-tuning, all the volcanic deformations are detected, including the smallest one, Lazufre, deforming 5 mm/year. The first time confirmed deformation of Cerro El Condor is observed, deforming 9.9–17.5 mm/year. Finally, sensitivity analysis uncovered the model’s minimal detectable deformation of 2 mm/year.
Three-dimensional geoinformation is of great significance for understanding the living environment; however, 3-D perception from remote sensing data, especially on a large scale, is restricted, mainly due to the high costs of 3-D sensors such as light detection and ranging (LiDAR). To tackle this problem, we propose a method for monocular height estimation from optical imagery, which is currently one of the richest sources of remote sensing data. As an ill-posed problem, monocular height estimation requires well-designed networks for enhanced representations to improve the performance. Moreover, the distribution of height values is long-tailed with the low-height pixels, e.g., the background (BG), as the head, and thus, trained networks are usually biased and tend to underestimate building heights. To solve the problems, instead of formalizing the problem as a regression task, we propose HTC-DC Net following the classification–regression paradigm, with the head-tail cut (HTC) and the distribution-based constraints (DCs) as the main contributions. HTC-DC Net is composed of the backbone network as the feature extractor, the HTC-AdaBins module, and the hybrid regression process. The HTC-AdaBins module serves as the classification phase to determine bins adaptive to each input image. It is equipped with a vision transformer (ViT) encoder to incorporate local context with holistic information and involves an HTC to address the long-tailed problem in monocular height estimation for balancing the performances of foreground (FG) and BG pixels. The hybrid regression process does the regression via the smoothing of bins from the classification phase, which is trained via DCs. The proposed network is tested on three datasets of different resolutions, namely ISPRS Vaihingen (0.09 m), Data Fusion Contest 19 (DFC19) (1.3 m), and Global Building Height (GBH) (3 m). The experimental results show the superiority of the proposed network over existing methods by large margins. Extensive ablation studies demonstrate the effectiveness of each design component.
Deep neural network models significantly outperform classical algorithms in the hyperspectral image (HSI) classification task. These deep models improve generalization but incur significant computational demands. This article endeavors to alleviate the computational distress in a depthwise manner through the use of morphological operations. We propose the adaptive morphology filter (AMF) to effectively extract spatial features like the conventional depthwise convolution layer. Furthermore, we reparameterize AMF into its equivalent form, i.e., a traditional binary morphology filter, which drastically reduces the number of parameters in the inference phase. Finally, we stack multiple AMFs to achieve a large receptive field and construct a lightweight AMNet for classifying HSIs. It is noteworthy that we prove the deep stack of depthwise AMFs to be equivalent to structural element decomposition. We test our model on five benchmark datasets. Experiments show that our approach outperforms state-of-the-art methods with fewer parameters (≈10k).
Automated crop-type classification using Sentinel-2 satellite time series is essential to support agriculture monitoring. Recently, deep learning models based on transformer encoders became a promising approach for crop-type classification. Using explainable machine learning to reveal the inner workings of these models is an important step towards improving stakeholders’ trust and efficient agriculture monitoring. In this paper, we introduce a novel explainability framework that aims to shed a light on the essential crop disambiguation patterns learned by a state-of-the-art transformer encoder model. More specifically, we process the attention weights of a trained transformer encoder to reveal the critical dates for crop disambiguation and use domain knowledge to uncover the phenological events that support the model performance. We also present a sensitivity analysis approach to understand better the attention capability for revealing crop-specific phenological events. We report compelling results showing that attention patterns strongly relate to key dates, and consequently, to the critical phenological events for crop-type classification. These findings might be relevant for improving stakeholder trust and optimizing agriculture monitoring processes. Additionally, our sensitivity analysis demonstrates the limitation of attention weights for identifying the important events in the crop phenology as we empirically show that the unveiled phenological events depend on the other crops in the data considered during training.
The landscape for empirical social scientists has transformed with the rise of computational social science. Our researchers focus on aligning research goals with available digital trace data, evaluating data quality in relation to research objectives, and ensuring reproducibility through thorough documentation. They emphasize the critical need to assess and evaluate data feeding into AI systems to prevent biases, unfair operations, and the exacerbation of social inequalities.
Remote patient monitoring (RPM) is the use of digital technologies to improve patient care at a distance. However, current RPM solutions are often biased toward tech-savvy patients. To foster health equity, researchers have studied how to address the socio-economic and cognitive needs of diverse patient groups, but their emotional needs have remained largely neglected. We perform the first qualitative study to explore the emotional needs of diverse patients around RPM. Specifically, we conduct a thematic analysis of 18 interviews and 4 focus groups at a large US healthcare organization. We identify emotional needs that lead to four emotional tensions within and across stakeholder groups when applying an equity focus to the design and implementation of RPM technologies. The four emotional tensions are making diverse patients feel: (i) heard vs. exploited; (ii) seen vs. deprioritized for efficiency; (iii) empowered vs. anxious; and (iv) cared for vs. detached from care. To manage these emotional tensions across stakeholders, we develop design recommendations informed by a paradox mindset (i.e., ‘both-and’ rather than ‘and-or’ strategies).
Crime is responsible for major financial losses and serious harm to the well-being of individuals, and, hence, a crucial task of police operations is effective patrolling. Yet, in existing decision models aimed at police operations, microscopic routing decisions from patrolling are not considered, and, furthermore, the objective is limited to surrogate metrics (e. g., response time) instead of crime prevention. In this paper, we thus formalize the decision problem of dynamic police patrolling as a Markov decision process that models microscopic routing decisions, so that the expected number of prevented crimes are maximized. We experimentally show that standard solution approaches for our decision problem are not scalable to real-world settings. As a remedy, we present a tailored and highly efficient Monte Carlo tree search algorithm. We then demonstrate our algorithm numerically using real-world crime data from Chicago and show that the decision-making by our algorithm offers significant improvements for crime prevention over patrolling tactics from current practice. Informed by our results, we finally discuss implications for improving the patrolling tactics in police operations.
Estimating causal quantities from observational data is crucial for understanding the safety and effectiveness of medical treatments. However, to make reliable inferences, medical practitioners require not only estimating averaged causal quantities, such as the conditional average treatment effect, but also understanding the randomness of the treatment effect as a random variable. This randomness is referred to as aleatoric uncertainty and is necessary for understanding the probability of benefit from treatment or quantiles of the treatment effect. Yet, the aleatoric uncertainty of the treatment effect has received surprisingly little attention in the causal machine learning community. To fill this gap, we aim to quantify the aleatoric uncertainty of the treatment effect at the individualized (covariate-conditional) level, namely, the conditional distribution of the treatment effect (CDTE). Unlike average causal quantities, the CDTE is not point identifiable without strong additional assumptions. As a remedy, we employ partial identification to obtain sharp bounds on the CDTE and thereby quantify the aleatoric uncertainty of the treatment effect. We then develop a novel, orthogonal learner for the bounds on the CDTE, which we call AU-learner. We further show that our AU-learner has several strengths in that it satisfies Neyman-orthogonality and is doubly robust. Finally, we propose a fully-parametric deep learning instantiation of our AU-learner.
Predicting potential outcomes of interventions from observational data is crucial for decision-making in medicine, but the task is challenging due to the fundamental problem of causal inference. Existing methods are largely limited to point estimates of potential outcomes with no uncertain quantification; thus, the full information about the distributions of potential outcomes is typically ignored. In this paper, we propose a novel causal diffusion model called DiffPO, which is carefully designed for reliable inferences in medicine by learning the distribution of potential outcomes. In our DiffPO, we leverage a tailored conditional denoising diffusion model to learn complex distributions, where we address the selection bias through a novel orthogonal diffusion loss. Another strength of our DiffPO method is that it is highly flexible (e.g., it can also be used to estimate different causal quantities such as CATE). Across a wide range of experiments, we show that our method achieves state-of-the-art performance.
AI-driven decision-making systems are becoming instrumental in the public sector, with applications spanning areas like criminal justice, social welfare, financial fraud detection, and public health. While these systems offer great potential benefits to institutional decision-making processes, such as improved efficiency and reliability, these systems face the challenge of aligning machine learning (ML) models with the complex realities of public sector decision-making. In this paper, we examine five key challenges where misalignment can occur, including distribution shifts, label bias, the influence of past decision-making on the data side, as well as competing objectives and human-in-the-loop on the model output side. Our findings suggest that standard ML methods often rely on assumptions that do not fully account for these complexities, potentially leading to unreliable and harmful predictions. To address this, we propose a shift in modeling efforts from focusing solely on predictive accuracy to improving decision-making outcomes. We offer guidance for selecting appropriate modeling frameworks, including counterfactual prediction and policy learning, by considering how the model estimand connects to the decision-maker’s utility. Additionally, we outline technical methods that address specific challenges within each modeling approach. Finally, we argue for the importance of external input from domain experts and stakeholders to ensure that model assumptions and design choices align with real-world policy objectives, taking a step towards harmonizing AI and public sector objectives.
Recent advances in Large Language Models (LLMs) have sparked wide interest in validating and comprehending the human-like cognitive-behavioral traits LLMs may capture and convey. These cognitive-behavioral traits include typically Attitudes, Opinions, Values (AOVs). However, measuring AOVs embedded within LLMs remains opaque, and different evaluation methods may yield different results. This has led to a lack of clarity on how different studies are related to each other and how they can be interpreted. This paper aims to bridge this gap by providing a comprehensive overview of recent works on the evaluation of AOVs in LLMs. Moreover, we survey related approaches in different stages of the evaluation pipeline in these works. By doing so, we address the potential and challenges with respect to understanding the model, human-AI alignment, and downstream application in social sciences. Finally, we provide practical insights into evaluation methods, model enhancement, and interdisciplinary collaboration, thereby contributing to the evolving landscape of evaluating AOVs in LLMs.
Generative artificial intelligence (AI) presents large risks for society when it is used to create fake news. A crucial factor for fake news to go viral on social media is that users share such content. Here, we aim to shed light on the sharing behavior of users across human-generated vs. AI-generated fake news. Specifically, we study: (1) What is the perceived veracity of human-generated fake news vs. AI-generated fake news? (2) What is the user’s willingness to share human-generated fake news vs. AI-generated fake news on social media? (3) What socio-economic characteristics let users fall for AI-generated fake news? To this end, we conducted a pre-registered, online experiment with N= 988 subjects and 20 fake news from the COVID-19 pandemic generated by GPT-4 vs. humans. Our findings show that AI-generated fake news is perceived as less accurate than human-generated fake news, but both tend to be shared equally. Further, several socio-economic factors explain who falls for AI-generated fake news.
The 2022 Russian invasion of Ukraine was accompanied by a large-scale, pro-Russian propaganda campaign on social media. However, the strategy behind the dissemination of propaganda has remained unclear, particularly how the online discourse was strategically shaped by the propagandists’ community. Here, we analyze the strategy of the Twitter community using an inverse reinforcement learning (IRL) approach. Specifically, IRL allows us to model online behavior as a Markov decision process, where the goal is to infer the underlying reward structure that guides propagandists when interacting with users with a supporting or opposing stance toward the invasion. Thereby, we aim to understand empirically whether and how between-user interactions are strategically used to promote the proliferation of Russian propaganda. For this, we leverage a large-scale dataset with 349,455 posts with pro-Russian propaganda from 132,131 users. We show that bots and humans follow a different strategy: bots respond predominantly to pro-invasion messages, suggesting that they seek to drive virality; while messages indicating opposition primarily elicit responses from humans, suggesting that they tend to engage in critical discussions. To the best of our knowledge, this is the first study analyzing the strategy behind propaganda from the 2022 Russian invasion of Ukraine through the lens of IRL.
Online hate speech is responsible for violent attacks such as, e.g., the Pittsburgh synagogue shooting in 2018, thereby posing a significant threat to vulnerable groups and society in general. However, little is known about what makes hate speech on social media go viral. In this paper, we collect N = 25,219 cascades with 65,946 retweets from X (formerly known as Twitter) and classify them as hateful vs. normal. Using a generalized linear regression, we then estimate differences in the spread of hateful vs. normal content based on author and content variables. We thereby identify important determinants that explain differences in the spreading of hateful vs. normal content. For example, hateful content authored by verified users is disproportionally more likely to go viral than hateful content from non-verified ones: hateful content from a verified user (as opposed to normal content) has a 3.5 times larger cascade size, a 3.2 times longer cascade lifetime, and a 1.2 times larger structural virality. Altogether, we offer novel insights into the virality of hate speech on social media.
Algorithmic profiling is increasingly used in the public sector with the hope of allocating limited public resources more effectively and objectively. One example is the prediction-based profiling of job seekers to guide the allocation of support measures by public employment services. However, empirical evaluations of potential side-effects such as unintended discrimination and fairness concerns are rare in this context. We systematically compare and evaluate statistical models for predicting job seekers’ risk of becoming long-term unemployed concerning subgroup prediction performance, fairness metrics, and vulnerabilities to data analysis decisions. Focusing on Germany as a use case, we evaluate profiling models under realistic conditions using large-scale administrative data. We show that despite achieving high prediction performance on average, profiling models can be considerably less accurate for vulnerable social subgroups. In this setting, different classification policies can have very different fairness implications. We therefore call for rigorous auditing processes before such models are put to practice.
Online hate speech poses a serious threat to individual well-being and societal cohesion. A promising solution to curb online hate speech is counterspeech. Counterspeech is aimed at encouraging users to reconsider hateful posts by direct replies. However, current methods lack scalability due to the need for human intervention or fail to adapt to the specific context of the post. A potential remedy is the use of generative AI, specifically large language models (LLMs), to write tailored counterspeech messages. In this paper, we analyze whether contextualized counterspeech generated by state-of-the-art LLMs is effective in curbing online hate speech. To do so, we conducted a large-scale, pre-registered field experiment (N=2,664) on the social media platform Twitter/X. Our experiment followed a 2x2 between-subjects design and, additionally, a control condition with no counterspeech. On the one hand, users posting hateful content on Twitter/X were randomly assigned to receive either (a) contextualized counterspeech or (b) non-contextualized counterspeech. Here, the former is generated through LLMs, while the latter relies on predefined, generic messages. On the other hand, we tested two counterspeech strategies: (a) promoting empathy and (b) warning about the consequences of online misbehavior. We then measured whether users deleted their initial hateful posts and whether their behavior changed after the counterspeech intervention (e.g., whether users adopted a less toxic language). We find that non-contextualized counterspeech employing a warning-of-consequence strategy significantly reduces online hate speech. However, contextualized counterspeech generated by LLMs proves ineffective and may even backfire.
A common challenge in continual learning (CL) is catastrophic forgetting, where the performance on old tasks drops after new, additional tasks are learned. In this paper, we propose a novel framework called ReCL to slow down forgetting in CL. Our framework exploits an implicit bias of gradient-based neural networks due to which these converge to margin maximization points. Such convergence points allow us to reconstruct old data from previous tasks, which we then combine with the current training data. Our framework is flexible and can be applied on top of existing, state-of-the-art CL methods to slow down forgetting. We further demonstrate the performance gain from our framework across a large series of experiments, including different CL scenarios (class incremental, domain incremental, task incremental learning) different datasets (MNIST, CIFAR10), and different network architectures. Across all experiments, we find large performance gains through ReCL. To the best of our knowledge, our framework is the first to address catastrophic forgetting by leveraging models in CL as their own memory buffers.
National Statistical Organizations (NSOs) increasingly draw on Machine Learning (ML) to improve the timeliness and cost-effectiveness of their products. When introducing ML solutions, NSOs must ensure that high standards with respect to robustness, reproducibility, and accuracy are upheld as codified, e.g., in the Quality Framework for Statistical Algorithms (QF4SA; Yung et al. 2022, Statistical Journal of the IAOS). At the same time, a growing body of research focuses on fairness as a pre-condition of a safe deployment of ML to prevent disparate social impacts in practice. However, fairness has not yet been explicitly discussed as a quality aspect in the context of the application of ML at NSOs. We employ the QF4SA quality framework and present a mapping of its quality dimensions to algorithmic fairness. We thereby extend the QF4SA framework in several ways: First, we investigate the interaction of fairness with each of these quality dimensions. Second, we argue for fairness as its own, additional quality dimension, beyond what is contained in the QF4SA so far. Third, we emphasize and explicitly address data, both on its own and its interaction with applied methodology. In parallel with empirical illustrations, we show how our mapping can contribute to methodology in the domains of official statistics, algorithmic fairness, and trustworthy machine learning.
Estimating heterogeneous treatment effects is important to tailor treatments to those individuals who would most likely benefit. However, conditional average treatment effect predictors may often be trained on one population but possibly deployed on different, possibly unknown populations. We use methodology for learning multi-accurate predictors to post-process CATE T-learners (differenced regressions) to become robust to unknown covariate shifts at the time of deployment. The method works in general for pseudo-outcome regression, such as the DR-learner. We show how this approach can combine (large) confounded observational and (smaller) randomized datasets by learning a confounded predictor from the observational dataset, and auditing for multi-accuracy on the randomized controlled trial. We show improvements in bias and mean squared error in simulations with increasingly larger covariate shift, and on a semi-synthetic case study of a parallel large observational study and smaller randomized controlled experiment. Overall, we establish a connection between methods developed for multi-distribution learning and achieve appealing desiderata (e.g. external validity) in causal inference and machine learning.
Due to the broad range of social media platforms, the requirements of abusive language detection systems are varied and ever-changing. Already a large set of annotated corpora with different properties and label sets were created, such as hate or misogyny detection, but the form and targets of abusive speech are constantly evolving. Since, the annotation of new corpora is expensive, in this work we leverage datasets we already have, covering a wide range of tasks related to abusive language detection. Our goal is to build models cheaply for a new target label set and/or language, using only a few training examples of the target domain. We propose a two-step approach: first we train our model in a multitask fashion. We then carry out few-shot adaptation to the target requirements. Our experiments show that using already existing datasets and only a few-shots of the target task the performance of models improve both monolingually and across languages. Our analysis also shows that our models acquire a general understanding of abusive language, since they improve the prediction of labels which are present only in the target dataset and can benefit from knowledge about labels which are not directly used for the target task.
Knowledge tracing (KT) is a popular approach for modeling students’ learning progress over time, which can enable more personalized and adaptive learning. However, existing KT approaches face two major limitations: (1) they rely heavily on expert-defined knowledge concepts (KCs) in questions, which is time-consuming and prone to errors; and (2) KT methods tend to overlook the semantics of both questions and the given KCs. In this work, we address these challenges and present KCQRL, a framework for automated knowledge concept annotation and question representation learning that can improve the effectiveness of any existing KT model. First, we propose an automated KC annotation process using large language models (LLMs), which generates question solutions and then annotates KCs in each solution step of the questions. Second, we introduce a contrastive learning approach to generate semantically rich embeddings for questions and solution steps, aligning them with their associated KCs via a tailored false negative elimination approach. These embeddings can be readily integrated into existing KT models, replacing their randomly initialized embeddings. We demonstrate the effectiveness of KCQRL across 15 KT algorithms on two large real-world Math learning datasets, where we achieve consistent performance improvements.
Document-level relation extraction aims at inferring structured human knowledge from textual documents. State-of-the-art methods for this task use pre-trained language models (LMs) via fine-tuning, yet fine-tuning is computationally expensive and cannot adapt to new relation types or new LMs. As a remedy, we leverage the generalization capabilities of pre-trained LMs and present a novel framework for document-level in-context few-shot relation extraction. Our framework has three strengths: it eliminates the need (1) for named entity recognition and (2) for human annotations of documents, and (3) it can be updated to new LMs without re-training. We evaluate our framework using DocRED, the largest publicly available dataset for document-level relation extraction, and demonstrate that our framework achieves state-of-the-art performance. We further show that our framework actually performs much better than the original labels from the development set of DocRED. Finally, we conduct an extensive benchmark demonstrating the effectiveness of our framework, achieving state-of-the-art results across six relation extraction datasets and outperforming more than 30 baseline methods. Unlike our framework, the baseline methods have large computational overhead (e.g., from fine-tuning). To the best of our knowledge, we are the first to reformulate the document-level relation extraction task as a tailored in-context few-shot learning paradigm.
Reliable estimation of treatment effects from observational data is important in many disciplines such as medicine. However, estimation is challenging when unconfoundedness as a standard assumption in the causal inference literature is violated. In this work, we leverage arbitrary (potentially high-dimensional) instruments to estimate bounds on the conditional average treatment effect (CATE). Our contributions are three-fold: (1) We propose a novel approach for partial identification through a mapping of instruments to a discrete representation space so that we yield valid bounds on the CATE. This is crucial for reliable decision-making in real-world applications. (2) We derive a two-step procedure that learns tight bounds using a tailored neural partitioning of the latent instrument space. As a result, we avoid instability issues due to numerical approximations or adversarial training. Furthermore, our procedure aims to reduce the estimation variance in finite-sample settings to yield more reliable estimates. (3) We show theoretically that our procedure obtains valid bounds while reducing estimation variance. We further perform extensive experiments to demonstrate the effectiveness across various settings. Overall, our procedure offers a novel path for practitioners to make use of potentially high-dimensional instruments (e.g., as in Mendelian randomization).
Investors are continuously seeking profitable investment opportunities in startups and, hence, for effective decision-making, need to predict a startup’s probability of success. Nowadays, investors can use not only various fundamental information about a startup (e.g., the age of the startup, the number of founders, and the business sector) but also textual description of a startup’s innovation and business model, which is widely available through online venture capital (VC) platforms such as Crunchbase. To support the decision-making of investors, we develop a machine learning approach with the aim of locating successful startups on VC platforms. Specifically, we develop, train, and evaluate a tailored, fused large language model to predict startup success. Thereby, we assess to what extent self-descriptions on VC platforms are predictive of startup success. Using 20,172 online profiles from Crunchbase, we find that our fused large language model can predict startup success, with textual self-descriptions being responsible for a significant part of the predictive power. Our work provides a decision support tool for investors to find profitable investment opportunities.
We propose an algorithm for optimizing the parameters of single hidden layer neural networks. Specifically, we derive a blockwise difference-of-convex (DC) functions representation of the objective function. Based on the latter, we propose a block coordinate descent (BCD) approach that we combine with a tailored difference-of-convex functions algorithm (DCA). We prove global convergence of the proposed algorithm. Furthermore, we mathematically analyze the convergence rate of parameters and the convergence rate in value (i.e., the training loss). We give conditions under which our algorithm converges linearly or even faster depending on the local shape of the loss function. We confirm our theoretical derivations numerically and compare our algorithm against state-of-the-art gradient-based solvers in terms of both training loss and test loss.
Large language models (LLMs) are increasingly used in daily work. In this paper, we analyze whether training in prompt engineering can improve the interactions of users with LLMs. For this, we conducted a field experiment where we asked journalists to write short texts before and after training in prompt engineering. We then analyzed the effect of training on three dimensions: (1) the user experience of journalists when interacting with LLMs, (2) the accuracy of the texts (assessed by a domain expert), and (3) the reader perception, such as clarity, engagement, and other text quality dimensions (assessed by non-expert readers). Our results show: (1) Our training improved the perceived expertise of journalists but also decreased the perceived helpfulness of LLM use. (2) The effect on accuracy varied by the difficulty of the task. (3) There is a mixed impact of training on reader perception across different text quality dimensions.
The Sustainable Development Goals (SDGs) of the United Nations provide a blueprint of a better future by ’leaving no one behind’, and, to achieve the SDGs by 2030, poor countries require immense volumes of development aid. In this paper, we develop a causal machine learning framework for predicting heterogeneous treatment effects of aid disbursements to inform effective aid allocation. Specifically, our framework comprises three components: (i) a balancing autoencoder that uses representation learning to embed high-dimensional country characteristics while addressing treatment selection bias; (ii) a counterfactual generator to compute counterfactual outcomes for varying aid volumes to address small sample-size settings; and (iii) an inference model that is used to predict heterogeneous treatment-response curves. We demonstrate the effectiveness of our framework using data with official development aid earmarked to end HIV/AIDS in 105 countries, amounting to more than USD 5.2 billion. For this, we first show that our framework successfully computes heterogeneous treatment-response curves using semi-synthetic data. Then, we demonstrate our framework using real-world HIV data. Our framework points to large opportunities for a more effective aid allocation, suggesting that the total number of new HIV infections could be reduced by up to 3.3% (~50,000 cases) compared to the current allocation practice.
Online propaganda poses a severe threat to the integrity of societies. However, existing datasets for detecting online propaganda have a key limitation: they were annotated using weak labels that can be noisy and even incorrect. To address this limitation, our work makes the following contributions: (1) We present HQP: a novel dataset (N=30000) for detecting online propaganda with high-quality labels. To the best of our knowledge, HQP is the first large-scale dataset for detecting online propaganda that was created through human annotation. (2) We show empirically that state-of-the-art language models fail in detecting online propaganda when trained with weak labels (AUC: 64.03). In contrast, state-of-the-art language models can accurately detect online propaganda when trained with our high-quality labels (AUC: 92.25), which is an improvement of 44%. (3) We show that prompt-based learning using a small sample of high-quality labels can still achieve a reasonable performance (AUC: 80.27) while significantly reducing the cost of labeling. (4) We extend HQP to HQP+ to test how well propaganda across different contexts can be detected. Crucially, our work highlights the importance of high-quality labels for sensitive NLP tasks such as propaganda detection.
The open-ended nature of language generation makes the evaluation of autoregressive large language models (LLMs) challenging. One common evaluation approach uses multiple-choice questions to limit the response space. The model is then evaluated by ranking the candidate answers by the log probability of the first token prediction. However, first-tokens may not consistently reflect the final response output, due to model’s diverse response styles such as starting with ‘Sure’ or refusing to answer. Consequently, first-token evaluation is not indicative of model behaviour when interacting with users. But by how much? We evaluate how aligned first-token evaluation is with the text output along several dimensions, namely final option choice, refusal rate, choice distribution and robustness under prompt perturbation. Our results show that the two approaches are severely misaligned on all dimensions, reaching mismatch rates over 60%. Models heavily fine-tuned on conversational or safety data are especially impacted. Crucially, models remain misaligned even when we increasingly constrain prompts, i.e., force them to start with an option letter or example template. Our findings i) underscore the importance of inspecting the text output as well and ii) caution against relying solely on first-token evaluation.
We present a research agenda focused on efficiently extracting, assuring quality, and consolidating textual company sustainability information to address urgent climate change decision-making needs. Starting from the goal to create integrated FAIR (Findable, Accessible, Interoperable, Reusable) climate-related data, we identify research needs pertaining to the technical aspects of information extraction as well as to the design of the integrated sustainability datasets that we seek to compile. Regarding extraction, we leverage technological advancements, particularly in large language models (LLMs) and Retrieval-Augmented Generation (RAG) pipelines, to unlock the underutilized potential of unstructured textual information contained in corporate sustainability reports. In applying these techniques, we review key challenges, which include the retrieval and extraction of CO2 emission values from PDF documents, especially from unstructured tables and graphs therein, and the validation of automatically extracted data through comparisons with human-annotated values. We also review how existing use cases and practices in climate risk analytics relate to choices of what textual information should be extracted and how it could be linked to existing structured data.
Whether future AI models are fair, trustworthy, and aligned with the public’s interests rests in part on our ability to collect accurate data about what we want the models to do. However, collecting high-quality data is difficult, and few AI/ML researchers are trained in data collection methods. Recent research in data-centric AI has show that higher quality training data leads to better performing models, making this the right moment to introduce AI/ML researchers to the field of survey methodology, the science of data collection. We summarize insights from the survey methodology literature and discuss how they can improve the quality of training and feedback data. We also suggest collaborative research ideas into how biases in data collection can be mitigated, making models more accurate and human-centric.
Algorithmic decision-making in practice must be fair for legal, ethical, and societal reasons. To achieve this, prior research has contributed various approaches that ensure fairness in machine learning predictions, while comparatively little effort has focused on fairness in decision-making, specifically off-policy learning. In this paper, we propose a novel framework for fair off-policy learning: we learn decision rules from observational data under different notions of fairness, where we explicitly assume that observational data were collected under a different – potentially discriminatory – behavioral policy. Importantly, our framework applies to different fairness notions for off-policy learning, where fairness is formalized based on actions or policy values. As our main contribution, we propose a neural network-based framework to learn optimal policies under different fairness notions. We further provide theoretical guarantees in the form of generalization bounds for the finite-sample version of our framework. We demonstrate the effectiveness of our framework through extensive numerical experiments using both simulated and real-world data. Altogether, our work enables algorithmic decision-making in a wide array of practical applications where fairness must be ensured.
Estimating the conditional average treatment effect (CATE) from observational data is relevant for many applications such as personalized medicine. Here, we focus on the widespread setting where the observational data come from multiple environments, such as different hospitals, physicians, or countries. Furthermore, we allow for violations of standard causal assumptions, namely, overlap within the environments and unconfoundedness. To this end, we move away from point identification and focus on partial identification. Specifically, we show that current assumptions from the literature on multiple environments allow us to interpret the environment as an instrumental variable (IV). This allows us to adapt bounds from the IV literature for partial identification of CATE by leveraging treatment assignment mechanisms across environments. Then, we propose different model-agnostic learners (so-called meta-learners) to estimate the bounds that can be used in combination with arbitrary machine learning models. We further demonstrate the effectiveness of our meta-learners across various experiments using both simulated and real-world data. Finally, we discuss the applicability of our meta-learners to partial identification in instrumental variable settings, such as randomized controlled trials with non-compliance.
Automated decision-making (ADM) systems are being deployed across a diverse range of critical problem areas such as social welfare and healthcare. Recent work highlights the importance of causal ML models in ADM systems, but implementing them in complex social environments poses significant challenges. Research on how these challenges impact the performance in specific downstream decision-making tasks is limited. Addressing this gap, we make use of a comprehensive real-world dataset of jobseekers to illustrate how the performance of a single CATE model can vary significantly across different decision-making scenarios and highlight the differential influence of challenges such as distribution shifts on predictions and allocations.
Estimating heterogeneous treatment effects (HTEs) over time is crucial in many disciplines such as personalized medicine. For example, electronic health records are commonly collected over several time periods and then used to personalize treatment decisions. Existing works for this task have mostly focused on model-based learners (i.e., learners that adapt specific machine-learning models). In contrast, model-agnostic learners – so-called meta-learners – are largely unexplored. In our paper, we propose several meta-learners that are model-agnostic and thus can be used in combination with arbitrary machine learning models (e.g., transformers) to estimate HTEs over time. Here, our focus is on learners that can be obtained via weighted pseudo-outcome regressions, which allows for efficient estimation by targeting the treatment effect directly. We then provide a comprehensive theoretical analysis that characterizes the different learners and that allows us to offer insights into when specific learners are preferable. Finally, we confirm our theoretical insights through numerical experiments. In sum, while meta-learners are already state-of-the-art for the static setting, we are the first to propose a comprehensive set of meta-learners for estimating HTEs in the time-varying setting.
Hate speech on social media threatens the mental and physical well-being of individuals and contributes to real-world violence. Resharing is an important driver behind the spread of hate speech on social media. Yet, little is known about who reshares hate speech and what their characteristics are. In this paper, we analyze the role of user characteristics in hate speech resharing across different types of hate speech (e.g., political hate). For this, we proceed as follows: First, we cluster hate speech posts using large language models to identify different types of hate speech. Then we model the effects of user attributes on users’ probability to reshare hate speech using an explainable machine learning model. To do so, we apply debiasing to control for selection bias in our observational social media data and further control for the latent vulnerability of users to hate speech. We find that, all else equal, users with fewer followers, fewer friends, fewer posts, and older accounts share more hate speech. This shows that users with little social influence tend to share more hate speech. Further, we find substantial heterogeneity across different types of hate speech. For example, racist and misogynistic hate is spread mostly by users with little social influence. In contrast, political anti-Trump and anti-right-wing hate is reshared by users with larger social influence. Overall, understanding the factors that drive users to share hate speech is crucial for detecting individuals at risk of engaging in harmful behavior and for designing effective mitigation strategies.
Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
Clinical data informs the personalization of health care with a potential for more effective disease management. In practice, this is achieved by emph{subgrouping}, whereby clusters with similar patient characteristics are identified and then receive customized treatment plans with the goal of targeting subgroup-specific disease dynamics. In this paper, we propose a novel mixture hidden Markov model for subgrouping patient trajectories from emph{chronic diseases}. Our model is probabilistic and carefully designed to capture different trajectory phases of chronic diseases (i.e., “severe”, “moderate”, and “mild”) through tailored latent states. We demonstrate our subgrouping framework based on a longitudinal study across 847 patients with non-specific low back pain. Here, our subgrouping framework identifies 8 subgroups. Further, we show that our subgrouping framework outperforms common baselines in terms of cluster validity indices. Finally, we discuss the applicability of the model to other chronic and long-lasting diseases.
Identifying constructs in text data is a labor-intensive task in social science research. Despite the potential richness of open-ended survey responses, the complexity of analyzing them often leads researchers to underutilize or ignore them entirely. While topic modeling offers a technological solution, qualitative researchers may remain skeptical of its rigor. In this paper, we introduce TOPCAT: Topic-Oriented Protocol for Content Analysis of Text, a systematic approach that integrates off-the-shelf topic modeling with human decisionmaking and curation. Our method aims to provide a viable solution for topicalizing open-ended responses in survey research, ensuring both efficiency and trustworthiness. We present the TOPCAT protocol, define an evaluation process, and demonstrate its effectiveness using open-ended responses from a U.S. survey on COVID-19 impact. Our findings suggest that TOPCAT enables efficient and rigorous qualitative analysis, offering a promising avenue for future research in this domain. Furthermore, our findings challenge the adequacy of expert coding schemes as ‘‘gold’’ standards, emphasizing the subjectivity inherent in qualitative content interpretation.
We address the challenges and implications of ensuring fairness in algorithmic decision-making (ADM) practices related to ethnicity. Expanding beyond the U.S.-centric approach to race, we provide an overview of ethnic classification schemes in European countries and emphasize how the distinct approaches to ethnicity in Europe can impact fairness assessments in ADM. Drawing on large-scale German survey data, we highlight differences in ethnic disadvantage across subpopulations defined by different measures of ethnicity. We build prediction models in the labor market, health, and finance domain and investigate the fairness implications of different ethnic classification schemes across multiple prediction tasks and fairness metrics. Our results show considerable variation in fairness scores across ethnic classifications, where error disparities for the same model can be twice as large when using different operationalizations of ethnicity. We argue that ethnic classifications differ in their ability to identify ethnic disadvantage across ADM domains and advocate for context-sensitive operationalizations of ethnicity and its transparent reporting in fair machine learning (ML) applications.
Data practices shape research and practice on fairness in machine learning (fair ML). Critical data studies offer important reflections and critiques for the responsible advancement of the field. In this work, we present a comprehensive analysis of fair ML datasets, demonstrating how unreflective yet common practices hinder the reach and reliability of algorithmic fairness findings. We systematically study protected information encoded in tabular datasets and their usage in 280 experiments across 142 publications. Our analyses identify three main areas of concern: (1) a lack of representation for certain protected attributes in both data and evaluations, (2) the widespread exclusion of minorities during data preprocessing, and (3) a lack of transparency about consequential yet overlooked dataset processing choices. We further note additional factors, such as limitations in publicly available data, privacy considerations and a general lack of awareness that further contribute to these issues. Through exemplary analyses on the usage of popular datasets, we demonstrate how opaque data choices significantly impact minorities, fairness metrics, and the resulting model comparison. To address these challenges, we propose a set of recommendations for data usage in fairness research centered on transparency and responsible inclusion. This study underscores the need for a critical reevaluation of data practices in fair ML and offers directions to improve both the sourcing and usage of datasets.
A vast number of systems across the world use algorithmic decision making (ADM) to (partially) automate decisions that have previously been made by humans. The downstream effects of ADM systems critically depend on the decisions made during a systems’ design, implementation, and evaluation, as biases in data can be mitigated or reinforced along the modeling pipeline. Many of these decisions are made implicitly, without knowing exactly how they will influence the final system. To study this issue, we draw on insights from the field of psychology and introduce the method of multiverse analysis for algorithmic fairness. In our proposed method, we turn implicit decisions during design and evaluation into explicit ones and demonstrate their fairness implications. By combining decisions, we create a grid of all possible “universes” of decision combinations. For each of these universes, we compute metrics of fairness and performance. Using the resulting dataset, one can investigate the variability and robustness of fairness scores and see how and which decisions impact fairness. We demonstrate how multiverse analyses can be used to better understand fairness implications of design and evaluation decisions using an exemplary case study of predicting public health care coverage for vulnerable populations. Our results highlight how decisions regarding the evaluation of a system can lead to vastly different fairness metrics for the same model. This is problematic, as a nefarious actor could optimise or “hack” a fairness metric to portray a discriminating model as fair merely by changing how it is evaluated. We illustrate how a multiverse analysis can help to address this issue.
Political advertising on social media has become a central element in election campaigns. However, granular information about political advertising on social media was previously unavailable, thus raising concerns regarding fairness, accountability, and transparency in the electoral process. In this article, we analyze targeted political advertising on social media via a unique, large-scale dataset of over 80,000 political ads from Meta during the 2021 German federal election, with more than billion impressions. For each political ad, our dataset records granular information about targeting strategies, spending, and actual impressions. We then study (i) the prevalence of targeted ads across the political spectrum; (ii) the discrepancies between targeted and actual audiences due to algorithmic ad delivery; and (iii) which targeting strategies on social media attain a wide reach at low cost. We find that targeted ads are prevalent across the entire political spectrum. Moreover, there are considerable discrepancies between targeted and actual audiences, and systematic differences in the reach of political ads (in impressions-per-EUR) among parties, where the algorithm favor ads from populists over others.
Conversational large language models are trained to refuse to answer harmful questions. However, emergent jailbreaking techniques can still elicit unsafe outputs, presenting an ongoing challenge for model alignment. To better understand how different jailbreak types circumvent safeguards, this paper analyses model activations on different jailbreak inputs. We find that it is possible to extract a jailbreak vector from a single class of jailbreaks that works to mitigate jailbreak effectiveness from other semantically-dissimilar classes. This may indicate that different kinds of effective jailbreaks operate via a similar internal mechanism. We investigate a potential common mechanism of harmfulness feature suppression, and find evidence that effective jailbreaks noticeably reduce a model’s perception of prompt harmfulness. These findings offer actionable insights for developing more robust jailbreak countermeasures and lay the groundwork for a deeper, mechanistic understanding of jailbreak dynamics in language models.
Artificial intelligence (AI) provides considerable opportunities to assist human work. However, one crucial challenge of human-AI collaboration is that many AI algorithms operate in a black-box manner where the way how the AI makes predictions remains opaque. This makes it difficult for humans to validate a prediction made by AI against their own domain knowledge. For this reason, we hypothesize that augmenting humans with explainable AI as a decision aid improves task performance in human-AI collaboration. To test this hypothesis, we analyze the effect of augmenting domain experts with explainable AI in the form of visual heatmaps. We then compare participants that were either supported by (a) black-box AI or (b) explainable AI, where the latter supports them to follow AI predictions when the AI is accurate or overrule the AI when the AI predictions are wrong. We conducted two preregistered experiments with representative, real-world visual inspection tasks from manufacturing and medicine. The first experiment was conducted with factory workers from an electronics factory, who performed N=9,600 assessments of whether electronic products have defects. The second experiment was conducted with radiologists, who performed N=5,650 assessments of chest X-ray images to identify lung lesions. The results of our experiments with domain experts performing real-world tasks show that task performance improves when participants are supported by explainable AI instead of black-box AI. For example, in the manufacturing setting, we find that augmenting participants with explainable AI (as opposed to black-box AI) leads to a five-fold decrease in the median error rate of human decisions, which gives a significant improvement in task performance.
Unobserved confounding is common in many applications, making causal inference from observational data challenging. As a remedy, causal sensitivity analysis is an important tool to draw causal conclusions under unobserved confounding with mathematical guarantees. In this paper, we propose NeuralCSA, a neural framework for generalized causal sensitivity analysis. Unlike previous work, our framework is compatible with (i) a large class of sensitivity models, including the marginal sensitivity model, -sensitivity models, and Rosenbaum’s sensitivity model; (ii) different treatment types (i.e., binary and continuous); and (iii) different causal queries, including (conditional) average treatment effects and simultaneous effects on multiple outcomes. This generality is achieved by learning a latent distribution shift that corresponds to a treatment intervention using two conditional normalizing flows. We provide theoretical guarantees that NeuralCSA is able to infer valid bounds on the causal query of interest and also demonstrate this empirically using both simulated and real-world data.
Treatment effect estimation in continuous time is crucial for personalized medicine. However, existing methods for this task are limited to point estimates of the potential outcomes, whereas uncertainty estimates have been ignored. Needless to say, uncertainty quantification is crucial for reliable decision-making in medical applications. To fill this gap, we propose a novel Bayesian neural controlled differential equation (BNCDE) for treatment effect estimation in continuous time. In our BNCDE, the time dimension is modeled through a coupled system of neural controlled differential equations and neural stochastic differential equations, where the neural stochastic differential equations allow for tractable variational Bayesian inference. Thereby, for an assigned sequence of treatments, our BNCDE provides meaningful posterior predictive distributions of the potential outcomes. To the best of our knowledge, ours is the first tailored neural method to provide uncertainty estimates of treatment effects in continuous time. As such, our method is of direct practical value for promoting reliable decision-making in medicine.
State-of-the-art methods for conditional average treatment effect (CATE) estimation make widespread use of representation learning. Here, the idea is to reduce the variance of the low-sample CATE estimation by a (potentially constrained) low-dimensional representation. However, low-dimensional representations can lose information about the observed confounders and thus lead to bias, because of which the validity of representation learning for CATE estimation is typically violated. In this paper, we propose a new, representation-agnostic refutation framework for estimating bounds on the representation-induced confounding bias that comes from dimensionality reduction (or other constraints on the representations) in CATE estimation. First, we establish theoretically under which conditions CATE is non-identifiable given low-dimensional (constrained) representations. Second, as our remedy, we propose a neural refutation framework which performs partial identification of CATE or, equivalently, aims at estimating lower and upper bounds of the representation-induced confounding bias. We demonstrate the effectiveness of our bounds in a series of experiments. In sum, our refutation framework is of direct relevance in practice where the validity of CATE estimation is of importance.
Fairness of machine learning predictions is widely required in practice for legal, ethical, and societal reasons. Existing work typically focuses on settings without unobserved confounding, even though unobserved confounding can lead to severe violations of causal fairness and, thus, unfair predictions. In this work, we analyze the sensitivity of causal fairness to unobserved confounding. Our contributions are three-fold. First, we derive bounds for causal fairness metrics under different sources of unobserved confounding. This enables practitioners to examine the sensitivity of their machine learning models to unobserved confounding in fairness-critical applications. Second, we propose a novel neural framework for learning fair predictions, which allows us to offer worst-case guarantees of the extent to which causal fairness can be violated due to unobserved confounding. Third, we demonstrate the effectiveness of our framework in a series of experiments, including a real-world case study about predicting prison sentences. To the best of our knowledge, ours is the first work to study causal fairness under unobserved confounding. To this end, our work is of direct practical value as a refutation strategy to ensure the fairness of predictions in high-stakes applications.
Estimating potential outcomes for treatments over time based on observational data is important for personalized decision-making in medicine. Yet, existing neural methods for this task either (1) do not perform proper adjustments for time-varying confounders, or (2) suffer from large estimation variance. In order to address both limitations, we introduce the G-transformer (GT). Our GT is a novel, neural end-to-end model which adjusts for time-varying confounders, and provides low-variance estimation of conditional average potential outcomes (CAPOs) over time. Specifically, our GT is the first neural model to perform regression-based iterative G-computation for CAPOs in the time-varying setting. We evaluate the effectiveness of our GT across various experiments. In sum, this work represents a significant step towards personalized decision-making from electronic health records.
Causal machine learning (ML) offers flexible, data-driven methods for predicting treatment outcomes including efficacy and toxicity, thereby supporting the assessment and safety of drugs. A key benefit of causal ML is that it allows for estimating individualized treatment effects, so that clinical decision-making can be personalized to individual patient profiles. Causal ML can be used in combination with both clinical trial data and real-world data, such as clinical registries and electronic health records, but caution is needed to avoid biased or incorrect predictions. In this Perspective, we discuss the benefits of causal ML (relative to traditional statistical or ML approaches) and outline the key components and steps. Finally, we provide recommendations for the reliable use of causal ML and effective translation into the clinic.
Prompt-based methods have been successfully applied to multilingual pretrained language models for zero-shot cross-lingual understanding. However, most previous studies primarily focused on sentence-level classification tasks, and only a few considered token-level labeling tasks such as Named Entity Recognition (NER) and Part-of-Speech (POS) tagging. In this paper, we propose Token-Level Prompt Decomposition (ToPro), which facilitates the prompt-based method for token-level sequence labeling tasks. The ToPro method decomposes an input sentence into single tokens and applies one prompt template to each token. Our experiments on multilingual NER and POS tagging datasets demonstrate that ToPro-based fine-tuning outperforms Vanilla fine-tuning and Prompt-Tuning in zero-shot cross-lingual transfer, especially for languages that are typologically different from the source language English. Our method also attains state-of-the-art performance when employed with the mT5 model. Besides, our exploratory study in multilingual large language models shows that ToPro performs much better than the current in-context learning method. Overall, the performance improvements show that ToPro could potentially serve as a novel and simple benchmarking method for sequence labeling tasks.
The data-centric revolution in AI has revealed the importance of high-quality training data for developing successful AI models. However, annotations are sensitive to annotator characteristics, training materials, and to the design and wording of the data collection instrument. This paper explores the impact of observation order on annotations. We find that annotators’ judgments change based on the order in which they see observations. We use ideas from social psychology to motivate hypotheses about why this order effect occurs. We believe that insights from social science can help AI researchers improve data and model quality.
The association between protein intake and the need for mechanical ventilation (MV) is controversial. We aimed to investigate the associations between protein intake and outcomes in ventilated critically ill patients.
Hypoglycaemia is one of the most relevant complications of diabetes1 and induces alterations in physiological parameters2, 3 that can be measured with smartwatches and detected using machine learning (ML).4 The performance of these algorithms when applied to different hypoglycaemic ranges or in situations involving cognitive and psychomotor stress remains unclear. Demanding tasks can significantly affect the physiological responses on which the wearable-based hypoglycaemia detection relies.5 The present analysis aimed to investigate ML-based hypoglycaemia detection using wearable data at different levels of hypoglycaemia during a complex task involving cognitive and psychomotor challenges (driving).
In this Catchword article, we provide a conceptualization of generative AI as an entity in socio-technical systems and provide examples of models, systems, and applications. Based on that, we introduce limitations of current generative AI and provide an agenda for BISE research. Previous papers discuss generative AI around specific methods such as language models (e.g., Teubner et al. 2023; Dwivedi et al. 2023; Schöbel et al. 2023) or specific applications such as marketing (e.g., Peres et al. 2023), innovation management (Burger et al. 2023), scholarly research (e.g., Susarla et al. 2023; Davison et al. 2023), and education (e.g., Kasneci et al. 2023; Gimpel et al. 2023). Different from these works, we focus on generative AI in the context of information systems, and, to this end, we discuss several opportunities and challenges that are unique to the BISE community and make suggestions for impactful directions for BISE research.
Despite the predominance of English in their training data, English-centric Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks, raising questions about the depth and nature of their cross-lingual capabilities. This paper introduces the decomposed prompting approach to probe the linguistic structure understanding of these LLMs in sequence labeling tasks. Diverging from the single text-to-text prompt, our method generates for each token of the input sentence an individual prompt which asks for its linguistic label. We assess our method on the Universal Dependencies part-of-speech tagging dataset for 38 languages, utilizing both English-centric and multilingual LLMs. Our findings show that decomposed prompting surpasses the iterative prompting baseline in efficacy and efficiency under zero- and few-shot settings. Further analysis reveals the influence of evaluation methods and the use of instructions in prompts. Our multilingual investigation shows that English-centric language models perform better on average than multilingual models. Our study offers insights into the multilingual transferability of English-centric LLMs, contributing to the understanding of their multilingual linguistic knowledge.
BACKGROUND: Hypoglycemia, one of the most dangerous acute complications of diabetes, poses a substantial risk for vehicle accidents. To date, both reliable detection and warning of hypoglycemia while driving remain unmet needs, as current sensing approaches are restricted by diagnostic delay, invasiveness, low availability, and high costs. This research aimed to develop and evaluate a machine learning (ML) approach for the detection of hypoglycemia during driving through data collected on driving characteristics and gaze/head motion.
METHODS: We collected driving and gaze/head motion data (47,998 observations) during controlled euglycemia and hypoglycemia from 30 individuals with type 1 diabetes (24 male participants; mean ±SD age, 40.1±10.3 years; mean glycated hemoglobin value, 6.9±0.7% [51.9±8.0 mmol/mol]) while participants drove a real car. ML models were built and evaluated to detect hypoglycemia solely on the basis of data regarding driving characteristics and gaze/head motion.
RESULTS: The ML approach detected hypoglycemia with high accuracy (area under the receiver-operating characteristic curve [AUROC], 0.80±0.11). When restricted to either driving characteristics or gaze/head motion data only, the detection performance remained high (AUROC, 0.73±0.07 and 0.70±0.16, respectively).
CONCLUSIONS: Hypoglycemia could be detected noninvasively during real car driving with an ML approach that used only data on driving characteristics and gaze/head motion, thus improving driving safety and self-management for people with diabetes. Interpretable ML also provided novel insights into behavioral changes in people driving while hypoglycemic. (Funded by the Swiss National Science Foundation and others; ClinicalTrials.gov numbers, NCT04569630 and NCT05308095.)
Machine learning can provide predictions with disparate outcomes, in which subgroups of the population (e.g., defined by age, gender, or other sensitive attributes) are systematically disadvantaged. In order to comply with upcoming legislation, practitioners need to locate such disparate outcomes. However, previous literature typically detects disparities through statistical procedures for when the sensitive attribute is specified a priori. This limits applicability in real-world settings where datasets are high dimensional and, on top of that, sensitive attributes may be unknown. As a remedy, we propose a data-driven framework called Automatic Location of Disparities (ALD) which aims at locating disparities in machine learning. ALD meets several demands from industry: ALD (1) is applicable to arbitrary machine learning classifiers; (2) operates on different definitions of disparities (e.g., statistical parity or equalized odds); (3) deals with both categorical and continuous predictors even if disparities arise from complex and multi-way interactions known as intersectionality (e.g., age above 60 and female). ALD produces interpretable audit reports as output. We demonstrate the effectiveness of ALD based on both synthetic and real-world datasets. As a result, we empower practitioners to effectively locate and mitigate disparities in machine learning algorithms, conduct algorithmic audits, and protect individuals from discrimination.
Causal inference from observational data is crucial for many disciplines such as medicine and economics. However, sharp bounds for causal effects under relaxations of the unconfoundedness assumption (causal sensitivity analysis) are subject to ongoing research. So far, works with sharp bounds are restricted to fairly simple settings (e.g., a single binary treatment). In this paper, we propose a unified framework for causal sensitivity analysis under unobserved confounding in various settings. For this, we propose a flexible generalization of the marginal sensitivity model (MSM) and then derive sharp bounds for a large class of causal effects. This includes (conditional) average treatment effects, effects for mediation analysis and path analysis, and distributional effects. Furthermore, our sensitivity model is applicable to discrete, continuous, and time-varying treatments. It allows us to interpret the partial identification problem under unobserved confounding as a distribution shift in the latent confounders while evaluating the causal effect of interest. In the special case of a single binary treatment, our bounds for (conditional) average treatment effects coincide with recent optimality results for causal sensitivity analysis. Finally, we propose a scalable algorithm to estimate our sharp bounds from observational data.
Counterfactual inference aims to answer retrospective ‘what if’ questions and thus belongs to the most fine-grained type of inference in Pearl’s causality ladder. Existing methods for counterfactual inference with continuous outcomes aim at point identification and thus make strong and unnatural assumptions about the underlying structural causal model. In this paper, we relax these assumptions and aim at partial counterfactual identification of continuous outcomes, i.e., when the counterfactual query resides in an ignorance interval with informative bounds. We prove that, in general, the ignorance interval of the counterfactual queries has non-informative bounds, already when functions of structural causal models are continuously differentiable. As a remedy, we propose a novel sensitivity model called Curvature Sensitivity Model. This allows us to obtain informative bounds by bounding the curvature of level sets of the functions. We further show that existing point counterfactual identification methods are special cases of our Curvature Sensitivity Model when the bound of the curvature is set to zero. We then propose an implementation of our Curvature Sensitivity Model in the form of a novel deep generative model, which we call Augmented Pseudo-Invertible Decoder. Our implementation employs (i) residual normalizing flows with (ii) variational augmentations. We empirically demonstrate the effectiveness of our Augmented Pseudo-Invertible Decoder. To the best of our knowledge, ours is the first partial identification model for Markovian structural causal models with continuous outcomes.
Decision-making in personalized medicine such as cancer therapy or critical care must often make choices for dosage combinations, i.e., multiple continuous treatments. Existing work for this task has modeled the effect of multiple treatments independently, while estimating the joint effect has received little attention but comes with non-trivial challenges. In this paper, we propose a novel method for reliable off-policy learning for dosage combinations. Our method proceeds along three steps: (1) We develop a tailored neural network that estimates the individualized dose-response function while accounting for the joint effect of multiple dependent dosages. (2) We estimate the generalized propensity score using conditional normalizing flows in order to detect regions with limited overlap in the shared covariate-treatment space. (3) We present a gradient-based learning algorithm to find the optimal, individualized dosage combinations. Here, we ensure reliable estimation of the policy value by avoiding regions with limited overlap. We finally perform an extensive evaluation of our method to show its effectiveness. To the best of our knowledge, ours is the first work to provide a method for reliable off-policy learning for optimal dosage combinations.
The Russian invasion of Ukraine in February 2022 was accompanied by practices of information warfare, yet existing evidence is largely anecdotal while large-scale empirical evidence is lacking. Here, we analyze the spread of pro-Russian support on social media. For this, we collected messages from Twitter with pro-Russian support. Our findings suggest that pro-Russian messages received ∼251,000 retweets and thereby reached around 14.4 million users. We further provide evidence that bots played a disproportionate role in the dissemination of pro-Russian messages and amplified its proliferation in early-stage diffusion. Countries that abstained from voting on the United Nations Resolution ES-11/1 such as India, South Africa, and Pakistan showed pronounced activity of bots. Overall, 20.28% of the spreaders are classified as bots, most of which were created at the beginning of the invasion. Together, our findings suggest the presence of a large-scale Russian propaganda campaign on social media and highlight the new threats to society that originate from it. Our results also suggest that curbing bots may be an effective strategy to mitigate such campaigns.
Information in industry, research, and the public sector is widely stored as rendered documents (e.g., PDF files, scans). Hence, to enable downstream tasks, systems are needed that map rendered documents onto a structured hierarchical format. However, existing systems for this task are limited by heuristics and are not end-to-end trainable. In this work, we introduce the Document Structure Generator (DSG), a novel system for document parsing that is fully end-to-end trainable. DSG combines a deep neural network for parsing (i) entities in documents (e.g., figures, text blocks, headers, etc.) and (ii) relations that capture the sequence and nested structure between entities. Unlike existing systems that rely on heuristics, our DSG is trained end-to-end, making it effective and flexible for real-world applications. We further contribute a new, large-scale dataset called E-Periodica comprising real-world magazines with complex document structures for evaluation. Our results demonstrate that our DSG outperforms commercial OCR tools and, on top of that, achieves state-of-the-art performance. To the best of our knowledge, our DSG system is the first end-to-end trainable system for hierarchical document parsing.
Generative artificial intelligence (AI) tools have made it easy to create realistic disinformation that is hard to detect by humans and may undermine public trust. Some approaches used for assessing the reliability of online information may no longer work in the AI age. We offer suggestions for how research can help to tackle the threats of AI-generated disinformation.
Artificial intelligence (AI) drives innovation across society, economies and science. We argue for the importance of building AI technology according to open-source principles to foster accessibility, collaboration, responsibility and interoperability.
The computer science community has a long tradition of embracing open-source principles. However, companies increasingly restrict access to AI innovations. An example is OpenAI, which was founded to make scientific research openly available but which eventually restricted access to research findings. Although such a strategy reflects a company’s legitimate incentive to obtain financial returns, such protection increases concentration of power, restricting access to AI technology. Further down the road, concentrated power could lead to growing inequality in AI research, education and public use. Here we discuss why proprietary AI technology should be complemented by open-source AI across the essential components for building AI technology: datasets, source codes and models.
Fairness in predictions is of direct importance in practice due to legal, ethical, and societal reasons. It is often achieved through counterfactual fairness, which ensures that the prediction for an individual is the same as that in a counterfactual world under a different sensitive attribute. However, achieving counterfactual fairness is challenging as counterfactuals are unobservable. In this paper, we develop a novel deep neural network called Generative Counterfactual Fairness Network (GCFN) for making predictions under counterfactual fairness. Specifically, we leverage a tailored generative adversarial network to directly learn the counterfactual distribution of the descendants of the sensitive attribute, which we then use to enforce fair predictions through a novel counterfactual mediator regularization. If the counterfactual distribution is learned sufficiently well, our method is mathematically guaranteed to ensure the notion of counterfactual fairness. Thereby, our GCFN addresses key shortcomings of existing baselines that are based on inferring latent variables, yet which (a) are potentially correlated with the sensitive attributes and thus lead to bias, and (b) have weak capability in constructing latent representations and thus low prediction performance. Across various experiments, our method achieves state-of-the-art performance. Using a real-world case study from recidivism prediction, we further demonstrate that our method makes meaningful predictions in practice.
Understanding emerging threats from social media platforms.
To achieve net-zero emissions, public policy needs to foster rapid innovation of climate technologies. However, there is a scarcity of comprehensive and up-to-date evidence to guide policymaking by monitoring climate innovation systems. This is notable, especially at the center of the innovation process, where nascent inventions transition into profitable and scalable market solutions. Here, we discuss the potential of large language models (LLMs) to monitor climate technology innovation. By analyzing large pools of unstructured text data sources, such as company reports and social media, LLMs can automate information retrieval processes and thereby improve existing monitoring in terms of cost-effectiveness, timeliness, and comprehensiveness. In this perspective, we show how LLMs can play a crucial role in informing innovation policy for the energy transition by highlighting promising use cases and prevailing challenges for research and policy.
Real-time surveillance is a crucial element in the response to infectious disease outbreaks. However, the interpretation of incidence data is often hampered by delays occurring at various stages of data gathering and reporting. As a result, recent values are biased downward, which obscures current trends. Statistical nowcasting techniques can be employed to correct these biases, allowing for accurate characterization of recent developments and thus enhancing situational awareness. In this paper, we present a preregistered real-time assessment of eight nowcasting approaches, applied by independent research teams to German 7-day hospitalization incidences during the COVID-19 pandemic. This indicator played an important role in the management of the outbreak in Germany and was linked to levels of non-pharmaceutical interventions via certain thresholds. Due to its definition, in which hospitalization counts are aggregated by the date of case report rather than admission, German hospitalization incidences are particularly affected by delays and can take several weeks or months to fully stabilize. For this study, all methods were applied from 22 November 2021 to 29 April 2022, with probabilistic nowcasts produced each day for the current and 28 preceding days. Nowcasts at the national, state, and age-group levels were collected in the form of quantiles in a public repository and displayed in a dashboard. Moreover, a mean and a median ensemble nowcast were generated. We find that overall, the compared methods were able to remove a large part of the biases introduced by delays. Most participating teams underestimated the importance of very long delays, though, resulting in nowcasts with a slight downward bias. The accompanying prediction intervals were also too narrow for almost all methods. Averaged over all nowcast horizons, the best performance was achieved by a model using case incidences as a covariate and taking into account longer delays than the other approaches. For the most recent days, which are often considered the most relevant in practice, a mean ensemble of the submitted nowcasts performed best. We conclude by providing some lessons learned on the definition of nowcasting targets and practical challenges.
Maximilian Weigert
* Former member
Existing machine learning methods for causal inference usually estimate quantities expressed via the mean of potential outcomes (e.g., average treatment effect). However, such quantities do not capture the full information about the distribution of potential outcomes. In this work, we estimate the density of potential outcomes after interventions from observational data. For this, we propose a novel, fully-parametric deep learning method called Interventional Normalizing Flows. Specifically, we combine two normalizing flows, namely (i) a nuisance flow for estimating nuisance parameters and (ii) a target flow for parametric estimation of the density of potential outcomes. We further develop a tractable optimization objective based on a one-step bias correction for efficient and doubly robust estimation of the target flow parameters. As a result, our Interventional Normalizing Flows offer a properly normalized density estimator. Across various experiments, we demonstrate that our Interventional Normalizing Flows are expressive and highly effective, and scale well with both sample size and high-dimensional confounding. To the best of our knowledge, our Interventional Normalizing Flows are the first proper fully-parametric, deep learning method for density estimation of potential outcomes.
Antibody studies analyze immune responses to SARS-CoV-2 vaccination and infection, which is crucial for selecting vaccination strategies. In the KoCo-Impf study, conducted between 16 June and 16 December 2021, 6088 participants aged 18 and above from Munich were recruited to monitor antibodies, particularly in healthcare workers (HCWs) at higher risk of infection. Roche Elecsys® Anti-SARS-CoV-2 assays on dried blood spots were used to detect prior infections (anti-Nucleocapsid antibodies) and to indicate combinations of vaccinations/infections (anti-Spike antibodies). The anti-Spike seroprevalence was 94.7%, whereas, for anti-Nucleocapsid, it was only 6.9%. HCW status and contact with SARS-CoV-2-positive individuals were identified as infection risk factors, while vaccination and current smoking were associated with reduced risk. Older age correlated with higher anti-Nucleocapsid antibody levels, while vaccination and current smoking decreased the response. Vaccination alone or combined with infection led to higher anti-Spike antibody levels. Increasing time since the second vaccination, advancing age, and current smoking reduced the anti-Spike response. The cumulative number of cases in Munich affected the anti-Spike response over time but had no impact on anti-Nucleocapsid antibody development/seropositivity. Due to the significantly higher infection risk faced by HCWs and the limited number of significant risk factors, it is suggested that all HCWs require protection regardless of individual traits.
Maximilian Weigert
* Former member
The social media platform ‘Parler has emerged into a prominent fringe community where a significant part of the user base are self-reported supporters of QAnon, a far-right conspiracy theory alleging that a cabal of elites controls global politics. QAnon is considered to have had an influential role in the public discourse during the 2020 U.S. presidential election. However, little is known about QAnon supporters on Parler and what sets them aside from other users. Building up on social identity theory, we aim to profile the characteristics of QAnon supporters on Parler. We analyze a large-scale dataset with more than 600,000 profiles of English-speaking users on Parler. Based on users’ profiles, posts, and comments, we then extract a comprehensive set of user features, linguistic features, network features, and content features. This allows us to perform user profiling and understand to what extent these features discriminate between QAnon and non-QAnon supporters on Parler. Our analysis is three-fold: (1) We quantify the number of QAnon supporters on Parler, finding that 34,913 users (5.5% of all users) openly report supporting the conspiracy. (2) We examine differences between QAnon vs. non-QAnon supporters. We find that QAnon supporters differ statistically significantly from non-QAnon supporters across multiple dimensions. For example, they have, on average, a larger number of followers, followees, and posts, and thus have a large impact on the Parler network. (3) We use machine learning to identify which user characteristics discriminate QAnon from non-QAnon supporters. We find that user features, linguistic features, network features, and content features, can - to a large extent - discriminate QAnon vs. non-QAnon supporters on Parler. In particular, we find that user features are highly discriminatory, followed by content features and linguistic features.
Linking digital trace data to existing panel survey data may increase the overall analysis potential of the data. However, producing linked products often requires additional engagement from survey participants through consent or participation in additional tasks. Panel operators may worry that such additional requests may backfire and lead to lower panel retention, reducing the analysis potential of the data. To examine these concerns, we conducted an experiment in the German PASS panel survey after wave 11. Three quarters of panelists (n = 4,293) were invited to install a research app and to provide sensor data over a period of 6 months, while one quarter (n = 1,428) did not receive an invitation. We find that the request to install a smartphone app and share data significantly decreases panel retention in the wave immediately following the invitation by 3.3 percentage points. However, this effect wears off and is no longer significant in the second and third waves after the invitation. We conclude that researchers who run panel surveys have to take moderate negative effects on retention into account but that the potential gain likely outweighs these moderate losses.
Estimating conditional average treatment effects (CATEs) from observational data is relevant in many fields such as personalized medicine. However, in practice, the treatment assignment is usually confounded by unobserved variables and thus introduces bias. A remedy to remove the bias is the use of instrumental variables (IVs). Such settings are widespread in medicine (e.g., trials where the treatment assignment is used as binary IV). In this paper, we propose a novel, multiply robust machine learning framework, called MRIV, for estimating CATEs using binary IVs and thus yield an unbiased CATE estimator. Different from previous work for binary IVs, our framework estimates the CATE directly via a pseudo outcome regression. (1)~We provide a theoretical analysis where we show that our framework yields multiple robust convergence rates: our CATE estimator achieves fast convergence even if several nuisance estimators converge slowly. (2)~We further show that our framework asymptotically outperforms state-of-the-art plug-in IV methods for CATE estimation, in the sense that it achieves a faster rate of convergence if the CATE is smoother than the individual outcome surfaces. (3)~We build upon our theoretical results and propose a tailored deep neural network architecture called MRIV-Net for CATE estimation using binary IVs. Across various computational experiments, we demonstrate empirically that our MRIV-Net achieves state-of-the-art performance. To the best of our knowledge, our MRIV is the first multiply robust machine learning framework tailored to estimating CATEs in the binary IV setting.
Short-term forecasts of infectious disease spread are a critical component in risk evaluation and public health decision making. While different models for short-term forecasting have been developed, open questions about their relative performance remain. Here, we compare short-term probabilistic forecasts of popular mechanistic models based on the renewal equation with forecasts of statistical time series models. Our empirical comparison is based on data of the daily incidence of COVID-19 across six large US states over the first pandemic year. We find that, on average, probabilistic forecasts from statistical time series models are overall at least as accurate as forecasts from mechanistic models. Moreover, statistical time series models better capture volatility. Our findings suggest that domain knowledge, which is integrated into mechanistic models by making assumptions about disease dynamics, does not improve short-term forecasts of disease incidence. We note, however, that forecasting is often only one of many objectives and thus mechanistic models remain important, for example, to model the impact of vaccines or the emergence of new variants.
Open-source journalism emerged as a new phenomenon in the media ecosystem, which uses crowdsourcing to fact-check and generate investigative reports for world events using open sources (e.g., social media). A particularly prominent example is Bellingcat. Bellingcat is known for its investigations on the illegal use of chemical weapons during the Syrian war, the Russian responsibility for downing flight MH17, the identification of the perpetrators in the attempted murder of Alexei Navalny, and war crimes in the Russo-Ukraine war. Crucial for this is social media in order to disseminate findings and crowdsource fact-checks. In this work, we characterize the social media activities at Bellingcat on Twitter. For this, we built a comprehensive dataset of all N=24,682 tweets posted by Bellingcat on Twitter since its inception in July 2014. Our analysis is three-fold: (1) We analyze how Bellingcat uses Twitter to disseminate information and collect information from its follower base. Here, we find a steady increase in both posts and replies over time, particularly during the Russo-Ukrainian war, which is in line with the growing importance of Bellingcat for the traditional media ecosystem. (2) We identify characteristics of posts that are successful in eliciting user engagement. User engagement is particularly large for posts embedding additional media items and with a more negative sentiment. (3) We examine how the follower base has responded to the Russian invasion of Ukraine. Here, we find that the sentiment has become more polarized and negative. We attribute this to a ~13-fold increase in bots interacting with the Bellingcat account. Overall, our findings provide recommendations for how open-source journalism such as Bellingcat can successfully operate on social media.
Social media platforms disseminate extensive volumes of online content, including true and, in particular, false rumors. Previous literature has studied the diffusion of offline rumors, yet more research is needed to understand the diffusion of online rumors. In this paper, we examine the role of lifetime and crowd effects in social media sharing behavior for true vs. false rumors. Based on 126,301 Twitter cascades, we find that the sharing behavior is characterized by lifetime and crowd effects that explain differences in the spread of true as opposed to false rumors. All else equal, we find that a longer lifetime is associated with less sharing activities, yet the reduction in sharing is larger for false than for true rumors. Hence, lifetime is an important determinant explaining why false rumors die out. Furthermore, we find that the spread of false rumors is characterized by herding tendencies (rather than collective intelligence), whereby the spread of false rumors becomes proliferated at a larger cascade depth. These findings explain differences in the diffusion dynamics of true and false rumors and further offer practical implications for social media platforms.
In medical practice, treatments are selected based on the expected causal effects on patient outcomes. Here, the gold standard for estimating causal effects are randomized controlled trials; however, such trials are costly and sometimes even unethical. Instead, medical practice is increasingly interested in estimating causal effects among patient (sub)groups from electronic health records, that is, observational data. In this paper, we aim at estimating the average causal effect (ACE) from observational data (patient trajectories) that are collected over time. For this, we propose DeepACE: an end-to-end deep learning model. DeepACE leverages the iterative G-computation formula to adjust for the bias induced by time-varying confounders. Moreover, we develop a novel sequential targeting procedure which ensures that DeepACE has favorable theoretical properties, i. e., is doubly robust and asymptotically efficient. To the best of our knowledge, this is the first work that proposes an end-to-end deep learning model tailored for estimating time-varying ACEs. We compare DeepACE in an extensive number of experiments, confirming that it achieves state-of-the-art performance. We further provide a case study for patients suffering from low back pain to demonstrate that DeepACE generates important and meaningful findings for clinical practice. Our work enables practitioners to develop effective treatment recommendations based on population effects.
Background: Micro- and macrovascular complications are a major burden for individuals with diabetes and can already arise in a prediabetic state. To allocate effective treatments and to possibly prevent these complications, identification of those at risk is essential.
Objective: This study aimed to build machine learning (ML) models that predict the risk of developing a micro- or macrovascular complication in individuals with prediabetes or diabetes.
Methods: In this study, we used electronic health records from Israel that contain information about demographics, biomarkers, medications, and disease codes; span from 2003 to 2013; and were queried to identify individuals with prediabetes or diabetes in 2008. Subsequently, we aimed to predict which of these individuals developed a micro- or macrovascular complication within the next 5 years. We included 3 microvascular complications: retinopathy, nephropathy, and neuropathy. In addition, we considered 3 macrovascular complications: peripheral vascular disease (PVD), cerebrovascular disease (CeVD), and cardiovascular disease (CVD). Complications were identified via disease codes, and, for nephropathy, the estimated glomerular filtration rate and albuminuria were considered additionally. Inclusion criteria were complete information on age and sex and on disease codes (or measurements of estimated glomerular filtration rate and albuminuria for nephropathy) until 2013 to account for patient dropout. Exclusion criteria for predicting a complication were diagnosis of this specific complication before or in 2008. In total, 105 predictors from demographics, biomarkers, medications, and disease codes were used to build the ML models. We compared 2 ML models: logistic regression and gradient-boosted decision trees (GBDTs). To explain the predictions of the GBDTs, we calculated Shapley additive explanations values.
Results: Overall, 13,904 and 4259 individuals with prediabetes and diabetes, respectively, were identified in our underlying data set. For individuals with prediabetes, the areas under the receiver operating characteristic curve for logistic regression and GBDTs were, respectively, 0.657 and 0.681 (retinopathy), 0.807 and 0.815 (nephropathy), 0.727 and 0.706 (neuropathy), 0.730 and 0.727 (PVD), 0.687 and 0.693 (CeVD), and 0.707 and 0.705 (CVD); for individuals with diabetes, the areas under the receiver operating characteristic curve were, respectively, 0.673 and 0.726 (retinopathy), 0.763 and 0.775 (nephropathy), 0.745 and 0.771 (neuropathy), 0.698 and 0.715 (PVD), 0.651 and 0.646 (CeVD), and 0.686 and 0.680 (CVD). Overall, the prediction performance is comparable for logistic regression and GBDTs. The Shapley additive explanations values showed that increased levels of blood glucose, glycated hemoglobin, and serum creatinine are risk factors for microvascular complications. Age and hypertension were associated with an elevated risk for macrovascular complications.
Conclusions: Our ML models allow for an identification of individuals with prediabetes or diabetes who are at increased risk of developing micro- or macrovascular complications. The prediction performance varied across complications and target populations but was in an acceptable range for most prediction tasks.
As early as March 2020, the authors of this letter started to work on surveillance data to obtain a clearer picture of the pandemic’s dynamic. This letter outlines the lessons learned during this peculiar time, emphasizing the benefits that better data collection, management, and communication processes would bring to the table. We further want to promote nuanced data analyses as a vital element of general political discussion as opposed to drawing conclusions from raw data, which are often flawed in epidemiological surveillance data, and therefore underline the overall need for statistics to play a more central role in public discourse.
Maximilian Weigert
* Former member
Despite huge advances in local and systemic therapies, the 5-year relative survival rate for patients with metastatic CRC is still low. To avoid over- or undertreatment, proper risk stratification with regard to treatment strategy is highly needed. As EMT (epithelial-mesenchymal transition) is a major step in metastatic spread, this study analysed the prognostic effect of EMT-related genes in stage IV colorectal cancer patients using the study cohort of the FIRE-3 trial, an open-label multi-centre randomised controlled phase III trial of stage IV colorectal cancer patients. Overall, the prognostic relevance of EMT-related genes seems stage-dependent. EMT-related genes have no prognostic relevance in stage IV CRC as opposed to stage II/III.
Over the course of the COVID-19 pandemic, Generalized Additive Models (GAMs) have been successfully employed on numerous occasions to obtain vital data-driven insights. In this article we further substantiate the success story of GAMs, demonstrating their flexibility by focusing on three relevant pandemic-related issues. First, we examine the interdepency among infections in different age groups, concentrating on school children. In this context, we derive the setting under which parameter estimates are independent of the (unknown) case-detection ratio, which plays an important role in COVID-19 surveillance data. Second, we model the incidence of hospitalizations, for which data is only available with a temporal delay. We illustrate how correcting for this reporting delay through a nowcasting procedure can be naturally incorporated into the GAM framework as an offset term. Third, we propose a multinomial model for the weekly occupancy of intensive care units (ICU), where we distinguish between the number of COVID-19 patients, other patients and vacant beds. With these three examples, we aim to showcase the practical and ‘off-the-shelf’ applicability of GAMs to gain new insights from real-world data.
Maximilian Weigert
* Former member
High- and low pressure systems of the large-scale atmospheric circulation in the mid-latitudes drive European weather and climate. Potential future changes in the occurrence of circulation types are highly relevant for society. Classifying the highly dynamic atmospheric circulation into discrete classes of circulation types helps to categorize the linkages between atmospheric forcing and surface conditions (e.g. extreme events). Previous studies have revealed a high internal variability of projected changes of circulation types. Dealing with this high internal variability requires the employment of a single-model initial-condition large ensemble (SMILE) and an automated classification method, which can be applied to large climate data sets. One of the most established classifications in Europe are the 29 subjective circulation types called Grosswetterlagen by Hess & Brezowsky (HB circulation types). We developed, in the first analysis of its kind, an automated version of this subjective classification using deep learning. Our classifier reaches an overall accuracy of 41.1% on the test sets of nested cross-validation. It outperforms the state-of-the-art automatization of the HB circulation types in 20 of the 29 classes. We apply the deep learning classifier to the SMHI-LENS, a SMILE of the Coupled Model Intercomparison Project phase 6, composed of 50 members of the EC-Earth3 model under the SSP37.0 scenario. For the analysis of future frequency changes of the 29 circulation types, we use the signal-to-noise ratio to discriminate the climate change signal from the noise of internal variability. Using a 5%-significance level, we find significant frequency changes in 69% of the circulation types when comparing the future (2071–2100) to a reference period (1991–2020).
Maximilian Weigert
* Former member
Objectives: To examine the association of non-pharmaceutical interventions (NPIs) with anxiety and depressive symptoms among adults and determine if these associations varied by gender and age.
Methods: We combined survey data from 16,177,184 adults from 43 countries who participated in the daily COVID-19 Trends and Impact Survey via Facebook with time-varying NPI data from the Oxford COVID-19 Government Response Tracker between 24 April 2020 and 20 December 2020. Using logistic regression models, we examined the association of [1] overall NPI stringency and [2] seven individual NPIs (school closures, workplace closures, cancellation of public events, restrictions on the size of gatherings, stay-at-home requirements, restrictions on internal movement, and international travel controls) with anxiety and depressive symptoms.
Results: More stringent implementation of NPIs was associated with a higher odds of anxiety and depressive symptoms, albeit with very small effect sizes. Individual NPIs had heterogeneous associations with anxiety and depressive symptoms by gender and age.
Conclusion: Governments worldwide should be prepared to address the possible mental health consequences of stringent NPI implementation with both universal and targeted interventions for vulnerable groups.
Functions and datasets to support Valliant, Dever, and Kreuter (2018), doi:10.1007/978-3-319-93632-1, ‘Practical Tools for Designing and Weighting Survey Samples’. Contains functions for sample size calculation for survey samples using stratified or clustered one-, two-, and three-stage sample designs, and single-stage audit sample designs. Functions are included that will group geographic units accounting for distances apart and measures of size. Other functions compute variance components for multistage designs and sample sizes in two-phase designs. A number of example data sets are included.
Given the increasing usage of automated prediction systems in the context of high-stakes de- cisions, a growing body of research focuses on methods for detecting and mitigating biases in algorithmic decision-making. One important framework to audit for and mitigate biases in predictions is that of Multi-Calibration, introduced by Hebert-Johnson et al. (2018). The underlying fairness notion, Multi-Calibration, promotes the idea of multi-group fairness and requires calibrated predictions not only for marginal populations, but also for subpopulations that may be defined by complex intersections of many attributes. A simpler variant of Multi- Calibration, referred to as Multi-Accuracy, requires unbiased predictions for large collections of subpopulations. Hebert-Johnson et al. (2018) proposed a boosting-style algorithm for learning multi-calibrated predictors. Kim et al. (2019) demonstrated how to turn this al- gorithm into a post-processing strategy to achieve multi-accuracy, demonstrating empirical effectiveness across various domains. This package provides a stable implementation of the multi-calibration algorithm, called MCBoost. In contrast to other Fair ML approaches, MC- Boost does not harm the overall utility of a prediction model, but rather aims at improving calibration and accuracy for large sets of subpopulations post-training. MCBoost comes with strong theoretical guarantees, which have been explored formally in Hebert-Johnson et al. (2018), Kim et al. (2019), Dwork et al. (2019), Dwork et al. (2020) and Kim et al. (2021).
Accounting for phase variability is a critical challenge in functional data analysis. To separate it from amplitude variation, functional data are registered, i.e., their observed domains are deformed elastically so that the resulting functions are aligned with template functions. At present, most available registration approaches are limited to datasets of complete and densely measured curves with Gaussian noise. However, many real-world functional data sets are not Gaussian and contain incomplete curves, in which the underlying process is not recorded over its entire domain. In this work, we extend and refine a framework for joint likelihood-based registration and latent Gaussian process-based generalized functional principal component analysis that is able to handle incomplete curves. Our approach is accompanied by sophisticated open-source software, allowing for its application in diverse non-Gaussian data settings and a public code repository to reproduce all results. We register data from a seismological application comprising spatially indexed, incomplete ground velocity time series with a highly volatile Gamma structure. We describe, implement and evaluate the approach for such incomplete non-Gaussian functional data and compare it to existing routines.
Alexander Bauer
* Former member
This study investigates how age, period, and birth cohorts are related to altering travel distances. We analyze a repeated cross-sectional survey of German pleasure travels for the period 1971–2018 using a holistic age–period–cohort (APC) analysis framework. Changes in travel distances are attributed to the life cycle (age effect), macro-level developments (period effect), and generational membership (cohort effect). We introduce ridgeline matrices and partial APC plots as innovative visualization techniques facilitating the intuitive interpretation of complex temporal structures. Generalized additive models are used to circumvent the identification problem by fitting a bivariate tensor product spline between age and period. The results indicate that participation in short-haul trips is mainly associated with age, while participation in long-distance travel predominantly changed over the period. Generational membership shows less association with destination choice concerning travel distance. The presented APC approach is promising to address further questions of interest in tourism research.
Maximilian Weigert
* Former member
Alexander Bauer
* Former member
MCML emphasizes ML and data science research for human benefit, improving actions, automating tasks, and revealing insights. Basic ML research, though generic, offers wide applicability. In human-centered ML, we prioritize efficient human-algorithm-data interaction, expanding beyond traditional human-computer interaction to include intelligent systems and data, all within a framework of ethical considerations in AI development and deployment.
AI audits are a key mechanism for responsible AI governance. AI audits have been
proposed in a variety of laws and regulations standardized frameworks and guidelines for
industry best practices as a mechanism to facilitate public trust and accountability for AI system developers and deployers. Though AI auditing for the purpose of compliance and assurance with normative requirements currently lacks defined norms and standardized practices, some systematic assurance AI audit methodologies are emerging that are modelled on financial auditing practices. In the spirit of financial audits which aim to uphold trust in the integrity of the proper function of the financial markets for stakeholders, AI audits, on this line of reasoning, aim to provide assurance to their stakeholders about AI organizations’ ability to govern their algorithms in ways that mitigate harms and uphold human values. Against this backdrop, the nature of the auditing industry is currently evolving. Traditional financial auditing practices are becoming increasingly automated by AI and, given the complexity of some AI-systems themselves and the high degree of assurance that they will require, the future of AI auditing itself will foreseeably be automated. This paper makes a first step toward exploring this picture. I argue that current automated auditing trends run the risk of undermining the justificatory plausibility of auditing as an accountability and trust-facilitating mechanism itself. In particular, I suggest that this leads to a continuous desire for verification, in which the epistemic obscurity of auditing assurance – the nature of the judgment provided auditors – increases and the operational capability of audits to achieve their aims decreases.
Users frequently use their smartphones in combination with other smart devices, for example, when streaming music to smart speakers or controlling smart appliances. During these interconnected interactions, user data gets handled and processed by several entities that employ different data protection practices or are subject to different regulations. Users need to understand these processes to inform themselves in the right places and make informed privacy decisions. We conducted an online survey (N=120) to investigate whether users have accurate mental models about interconnected interactions. We found that users consider scenarios more privacy-concerning when multiple devices are involved. Yet, we also found that most users do not fully comprehend the privacy-relevant processes in interconnected interactions. Our results show that current privacy information methods are insufficient and that users must be better educated to make informed privacy decisions. Finally, we advocate for restricting data processing to the app layer and better encryption to reduce users’ data protection responsibilities.
As artificial intelligence becomes increasingly pervasive, it is essential that we understand the implications of bias in machine learning. Many developers rely on crowd workers to generate and annotate datasets for machine learning applications. However, this step risks embedding training data with labeler bias, leading to biased decision-making in systems trained on these datasets. To characterize labeler bias, we created a face dataset and conducted two studies where labelers of different ethnicity and sex completed annotation tasks. In the first study, labelers annotated subjective characteristics of faces. In the second, they annotated images using bounding boxes. Our results demonstrate that labeler demographics significantly impact both subjective and accuracy-based annotations, indicating that collecting a diverse set of labelers may not be enough to solve the problem. We discuss the consequences of these findings for current machine learning practices to create fair and unbiased systems.
Images and videos are widely used to elicit emotions; however, their visual appeal differs from real-world experiences. With virtual reality becoming more realistic, immersive, and interactive, we envision virtual environments to elicit emotions effectively, rapidly, and with high ecological validity. This work presents the first interactive virtual reality dataset to elicit emotions. We created five interactive virtual environments based on corresponding validated 360° videos and validated their effectiveness with 160 participants. Our results show that our virtual environments successfully elicit targeted emotions. Compared with the existing methods using images or videos, our dataset allows virtual reality researchers and practitioners to integrate their designs effectively with emotion elicitation settings in an immersive and interactive way.
Future domestic robots will become integral parts of our homes. They will have various sensors that continuously collect data and varying locomotion and interaction capabilities, enabling them to access all rooms and physically manipulate the environment. This raises many privacy concerns. We investigate how such concerns can be mitigated, using all possibilities enabled by the robot’s novel locomotion and interaction abilities. First, we found that privacy concerns increase with advanced locomotion and interaction capabilities through an online survey (N=90). Second, we conducted three focus groups (N=22) to construct 86 patterns to communicate the states of microphones, cameras, and the internet connectivity of domestic robots. Lastly, we conducted a large-scale online survey (N=1720) to understand which patterns perform best regarding trust, privacy, understandability, notification qualities, and user preference. Our final set of communication patterns will guide developers and researchers to ensure a privacy-preserving future with domestic robots.
In a world increasingly reliant on artificial intelligence, it is more important than ever to consider the ethical implications of artificial intelligence. One key under-explored challenge is labeler bias — bias introduced by individuals who label datasets — which can create inherently biased datasets for training and subsequently lead to inaccurate or unfair decisions in healthcare, employment, education, and law enforcement. Hence, we conducted a study (N=98) to investigate and measure the existence of labeler bias using images of people from different ethnicities and sexes in a labeling task. Our results show that participants hold stereotypes that influence their decision-making process and that labeler demographics impact assigned labels. We also discuss how labeler bias influences datasets and, subsequently, the models trained on them. Overall, a high degree of transparency must be maintained throughout the entire artificial intelligence training process to identify and correct biases in the data as early as possible.
Physiological sensing enables us to use advanced adaptive functionalities through physiological data (e.g., eye tracking) to change conditions. In this work, we investigate the impact of infilling methods on LSTM models’ performance in handling missing eye tracking data, specifically during blinks and gaps in recording. We conducted experiments using recommended infilling techniques from previous work on an openly available eye tracking dataset and LSTM model structure. Our findings indicate that the infilling method significantly influences LSTM prediction accuracy. These results underscore the importance of standardized infilling approaches for enhancing the reliability and reproducibility of LSTM-based eye tracking applications on a larger scale. Future work should investigate the impact of these infilling methods in larger datasets to investigate generalizability.
Currently, interactive systems use physiological sensing to enable advanced functionalities. While eye tracking is a promising means to understand the user, eye tracking data inherently suffers from missing data due to blinks, which may result in reduced system performance. We conducted a literature review to understand how researchers deal with this issue. We uncovered that researchers often implemented their use-case-specific pipeline to overcome the issue, ranging from ignoring missing data to artificial interpolation. With these first insights, we run a large-scale analysis on 11 publicly available datasets to understand the impact of the various approaches on data quality and accuracy. By this, we highlight the pitfalls in data processing and which methods work best. Based on our results, we provide guidelines for handling eye tracking data for interactive systems. Further, we propose a standard data processing pipeline that allows researchers and practitioners to pre-process and standardize their data efficiently.
Smartphone overuse is hyper-prevalent in society, and developing tools to prevent this overuse has become a focus of HCI. However, there is a lack of work investigating smartphone overuse interventions over the long term. We collected usage data from N = 1, 039 users of one sec over an average of 13.4 weeks and qualitative insights from 249 of the users through an online survey. We found that users overwhelmingly choose to target Social Media apps. We found that the short design frictions introduced by one sec effectively reduce how often users attempt to open target apps and lead to more intentional app-openings over time. Additionally, we found that users take periodic breaks from one sec interventions, and quickly rebound from a pattern of overuse when returning from breaks. Overall, we contribute findings from a longitudinal investigation of design frictions in the wild and identify usage patterns from real users in practice.
Social interaction is a crucial part of what it means to be human. Maintaining a healthy social life is strongly tied to positive outcomes for both physical and mental health. While we use personal informatics data to reflect on many aspects of our lives, technology-supported reflection for social interactions is currently under-explored. To address this, we first conducted an online survey (N=124) to understand how users want to be supported in their social interactions. Based on this, we designed and developed an app for users to track and reflect on their social interactions and deployed it in the wild for two weeks (N=25). Our results show that users are interested in tracking meaningful in-person interactions that are currently untraced and that an app can effectively support self-reflection on social interaction frequency and social load. We contribute insights and concrete design recommendations for technology-supported reflection for social interaction.
Communication is crucial for interpersonal connection, but sometimes we simply cannot find the right words. Some data, such as complex emotions, are either hard to quantify or are otherwise difficult to communicate. We have access to numerous personal statistics from quantified self devices, but hidden data are either untracked or require abstraction. In this paper, we explore physicalizations to communicate hidden data between couples. We recruited six couples (N=12 participants, 163 telegram responses) to participate in a two-week sensitization diary study followed by two participatory co-design sessions. We then hosted a one-day expert prototyping workshop (N=5) to create tangible artifacts based on the findings of the participatory phase. By iterating on the topic in three ways, we contribute (i) a design framework for understanding and tangibly representing hidden data, (ii) a discussion on the appropriateness of these methodologies, and (iii) open research questions to guide future research in the field.
As sophisticated artificial intelligence software becomes more ubiquitously and more intimately integrated within domains of traditionally human endeavor, many are raising questions over how responsibility (be it moral, legal, or causal) can be understood for an AI’s actions or influence on an outcome. So called ‘responsibility gaps’ occur whenever there exists an apparent chasm in the ordinary attribution of moral blame or responsibility when an AI automates physical or cognitive labor otherwise performed by human beings and commits an error. Healthcare administration is an industry ripe for responsibility gaps produced by these kinds of AI. The moral stakes of healthcare are often life and death, and the demand for reducing clinical uncertainty while standardizing care incentivizes the development and integration of AI diagnosticians and prognosticators. In this paper, we argue that (1) responsibility gaps are generated by ‘black box’ healthcare AI, (2) the presence of responsibility gaps (if unaddressed) creates serious moral problems, (3) a suitable solution is for relevant stakeholders to voluntarily responsibilize the gaps, taking on some moral responsibility for things they are not, strictly speaking, blameworthy for, and (4) should this solution be taken, black box healthcare AI will be permissible in the provision of healthcare.
Sedentary behavior is endemic in modern workplaces, contributing to negative physical and mental health outcomes. Although adjustable standing desks are increasing in popularity, people still avoid standing. We developed an open-source plug-and-play system to remotely control standing desks and investigated three system modes with a three-week in-the-wild user study (N=15). Interval mode forces users to stand once per hour, causing frustration. Adaptive mode nudges users to stand every hour unless the user has stood already. Smart mode, which raises the desk during breaks, was the best rated, contributing to increased standing time with the most positive qualitative feedback. However, non-computer activities need to be accounted for in the future. Therefore, our results indicate that a smart standing desk that shifts modes at opportune times has the most potential to reduce sedentary behavior in the workplace. We contribute our open-source system and insights for future intelligent workplace well-being systems.
Artificial intelligence-driven technology increasingly shapes work practices and, accordingly, employees’ opportunities for meaningful work (MW). In our paper, we identify five dimensions of MW: pursuing a purpose, social relationships, exercising skills and self-development, autonomy, self-esteem and recognition. Because MW is an important good, lacking opportunities for MW is a serious disadvantage. Therefore, we need to know to what extent employers have a duty to provide this good to their employees. We hold that employers have a duty of beneficence to design for opportunities for MW when implementing AI-technology in the workplace. We argue that this duty of beneficence is supported by the three major ethical theories, namely, Kantian ethics, consequentialism, and virtue ethics. We defend this duty against two objections, including the view that it is incompatible with the shareholder theory of the firm. We then employ the five dimensions of MW as our analytical lens to investigate how AI-based technological innovation in logistic warehouses has an impact, both positively and negatively, on MW, and illustrate that design for MW is feasible. We further support this practical feasibility with the help of insights from organizational psychology. We end by discussing how AI-based technology has an impact both on meaningful work (often seen as an aspirational goal) and decent work (generally seen as a matter of justice). Accordingly, ethical reflection on meaningful and decent work should become more integrated to do justice to how AI-technology inevitably shapes both simultaneously.
Security indicators, such as the padlock icon indicating SSL encryption in browsers, are established mechanisms to convey secure connections. Currently, such indicators mainly exist for browsers and mobile environments. With the rise of the metaverse, we investigate how to mark secure transitions between applications in virtual reality to so-called sub-metaverses. For this, we first conducted in-depth interviews with domain experts (N=8) to understand the general design dimensions for security indicators in virtual reality (VR). Using these insights and considering additional design constraints, we implemented the five most promising indicators and evaluated them in a user study (N=25). While the visual blinking indicator placed in the periphery performed best regarding accuracy and task completion time, participants subjectively preferred the static visual indicator above the portal. Moreover, the latter received high scores regarding understandability while still being rated low regarding intrusiveness and disturbance. Our findings contribute to a more secure and enjoyable metaverse experience.
Eye tracking is the basis for many intelligent systems to predict user actions. A core challenge with eye-tracking data is that it inherently suffers from missing data due to blinks. Approaches such as intent prediction and user state recognition process gaze data using neural networks; however, they often have difficulty handling missing information. In an effort to understand how prior work dealt with missing data, we found that researchers often simply ignore missing data or adopt use-case-specific approaches, such as artificially filling in missing data. This inconsistency in handling missing data in eye tracking hinders the development of effective intelligent systems for predicting user actions and limits reproducibility. Furthermore, this can even lead to incorrect results. Thus, this lack of standardization calls for investigating possible solutions to improve the consistency and effectiveness of processing eye-tracking data for user action prediction.
Over the last few years, we have seen many approaches using tangibles to address the limited expressiveness of touchscreens. Mainstream tangible detection uses fiducial markers embedded in the tangibles. However, the coarse sensor size of capacitive touchscreens makes tangibles bulky, limiting their usefulness. We propose a novel deep-learning super-resolution network to facilitate fiducial tangibles on capacitive touchscreens better. In detail, our network super-resolves the markers enabling off-the-shelf detection algorithms to track tangibles reliably. Our network generalizes to unseen marker sets, such as AprilTag, ArUco, and ARToolKit. Therefore, we are not limited to a fixed number of distinguishable objects and do not require data collection and network training for new fiducial markers. With extensive evaluation, including real-world users and five showcases, we demonstrate the applicability of our open-source approach on commodity mobile devices and further highlight the potential of tangibles on capacitive touchscreens.
Most smart home devices have multiple sensors, such as cameras and microphones; however, most cannot be controlled individually. Tangible privacy mechanisms provide control over individual sensors and instill high certainty of privacy. Yet, it remains unclear how they can be used in future smart homes. We conducted three studies to understand how tangible privacy mechanisms scale across multiple devices and respond to user needs. First, we conducted a focus group (N=8) on speculative tangible control artifacts to understand the user perspective. Second, we ran a workshop at a human-computer interaction conference (N=8) on tangible privacy. Third, we conducted a six-week in-the-wild study with a tangible, static privacy dashboard across six households. Our findings help to contrast the need for tangible privacy mechanisms on the sensor level with user needs on a smart home level. Finally, we discuss our design implications for future smart homes through the lens of inclusive privacy.
We are constantly surrounded by technology that collects and processes sensitive data, paving the way for privacy violations. Yet, current research investigating technology-facilitated privacy violations in the physical world is scattered and focused on specific scenarios or investigates such violations purely from an expert’s perspective. Informed through a large-scale online survey, we first construct a scenario taxonomy based on user-experienced privacy violations in the physical world through technology. We then validate our taxonomy and establish mitigation strategies using interviews and co-design sessions with privacy and security experts. In summary, this work contributes (1) a refined scenario taxonomy for technology-facilitated privacy violations in the physical world, (2) an understanding of how privacy violations manifest in the physical world, (3) a decision tree on how to inform users, and (4) a design space to create notices whenever adequate. With this, we contribute a conceptual framework to enable a privacy-preserving technology-connected world.
Today touchscreens are one of the most common input devices for everyday ubiquitous interaction. Yet, capacitive touchscreens are limited in expressiveness; thus, a large body of work has focused on extending the input capabilities of touchscreens. One promising approach is to use index finger orientation; however, this requires a two-handed interaction and poses ergonomic constraints. We propose using the thumb’s pitch as an additional input dimension to counteract these limitations, enabling one-handed interaction scenarios. Our deep convolutional neural network detecting the thumb’s pitch is trained on more than 230,000 ground truth images recorded using a motion tracking system. We highlight the potential of ThumbPitch by proposing several use cases that exploit the higher expressiveness, especially for one-handed scenarios. We tested three use cases in a validation study and validated our model. Our model achieved a mean error of only 11.9°.
Private homes are increasingly becoming smart spaces. While smart homes promise comfort, they expose most intimate spaces to security and privacy risks. Unfortunately, most users today are not equipped with the right tools to assess the vulnerabilities or privacy practices of smart devices. Further, users might lose track of the devices installed in their homes or are unaware of devices placed by a partner or host. We developed SaferHome, an interactive digital-physical privacy framework, to provide smart home users with security and privacy assessments and a sense of device location. SaferHome includes a digital list view and physical and digital dashboards that map real floor plans. We evaluated SaferHome with eight households in the wild. We find that users adopted various strategies to integrate the dashboards into their understanding and interpretation of smart home privacy. We present implications for the design of future smart home privacy frameworks that are impacted by technical affinity, device types, device ownership, and tangibility of assessments.
As ubiquitous computing brings sensors and actuators directly into our homes, they introduce privacy concerns for the owners and bystanders. However, privacy concerns may vary among devices and depend on the bystanders’ social relation to the owner. In this work, we hypothesize 1) that bystanders assign more privacy concerns to smart home devices than personal computing devices, such as smartphones, even though they have the same capabilities, and 2) that a stronger social relationship mitigates some of the bystanders’ privacy concerns. By conducting an online survey (n=170), we found that personal computing devices are perceived as significantly less privacy-concerning than smart home devices while having equal capabilities. By varying the assumed social relationship, we further found that a stronger connection to the owner reduces privacy concerns. Thus, as bystanders underestimate the risk of personal computing devices and are generally concerned about smart home devices, it is essential to alert the user about the presence of both. We argue that bystanders have to be informed about the privacy risks while entering a new space, in the best case, already in the entrance area.
While systems that use Artificial Intelligence (AI) are increasingly becoming part of everyday technology use, we do not fully understand how AI changes design processes. A structured understanding of how designers work with AI is needed to improve the design process and educate future designers. To that end, we conducted interviews with designers who participated in projects which used AI. While past work focused on AI systems created by experienced designers, we focus on the perspectives of a diverse sample of interaction designers. Our results show that the design process of an interactive system is affected when AI is integrated and that design teams adapt their processes to accommodate AI. Based on our data, we contribute four approaches adopted by interaction designers working with AI: a priori, post-hoc, model-centric, and competence-centric. Our work contributes a pragmatic account of how design processes for AI systems are enacted.
Users avoid engaging with privacy policies because they are lengthy and complex, making it challenging to retrieve relevant information. In response, research proposed contextual privacy policies (CPPs) that embed relevant privacy information directly into their affiliated contexts. To date, CPPs are limited to concept showcases. This work evolves CPPs into a production tool that automatically extracts and displays concise policy information. We first evaluated the technical functionality on the US’s 500 most visited websites with 59 participants. Based on our results, we further revised the tool to deploy it in the wild with 11 participants over ten days. We found that our tool is effective at embedding CPP information on websites. Moreover, we found that the tool’s usage led to more reflective privacy behavior, making CPPs powerful in helping users understand the consequences of their online activities. We contribute design implications around CPP presentation to inform future systems design.
Learn More About Our Other Research Areas or Checkout Our Publications