2023
[638]
D. Azinović, O. Maury, C. Hery, M. Nießner and J. Thies.
High-Res Facial Appearance Capture from Polarized Smartphone Images.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, 2023-06-18/2023-06-23.
arXiv.
[637]
D. Bär, F. Calderon, M. Lawlor, S. Licklederer, M. Totzauer and S. Feuerriegel.
Analyzing Social Media Activities at Bellingcat.
15th ACM Web Science Conference 2023 (WebSci 2023). Austin, TX, USA, 2023-04-30/2023-05-01.
DOI.
[636]
D. Bär, N. Pröllochs and S. Feuerriegel.
Finding Qs: Profiling QAnon Supporters on Parler.
17th International AAAI Conference on Web and Social Media (ICWSM 2023). Limassol, Cyprus, 2023-06-05/2023-06-08.
arXiv.
[635]
L. G. M. Bauer, C. Leiber, C. Böhm and C. Plant.
Extension of the Dip-test Repertoire - Efficient and Differentiable p-value Calculation for Clustering.
SIAM International Conference on Data Mining (SDM 2023). Minneapolis, MN, USA, 2023-04-27/2023-04-29.
DOI.
[634]
A. Beer, A. Draganov, E. Hohma, P. Jahn, C. M. M. Frey and I. Assent.
Connecting the Dots — Density-Connectivity Distance unifies DBSCAN, k-Center and Spectral Clustering.
29th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2023). Long Beach, CA, USA, 2023-08-06/2023-08-10.
[633]
M. Biloš, K. Rasul, A. Schneider, Y. Nevmyvaka and S. Günnemann.
Modeling Temporal Data as Continuous Functions with Process Diffusion.
40th International Conference on Machine Learning (ICML 2023). Honolulu, Hawaii, 2023-07-23/2023-07-29.
arXiv.
[632]
B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann, M. Becker, A.-L. Boulesteix, D. Deng and M. Lindauer.
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery (2023).
DOI.
[631]
V. Blaschke, H. Schütze and B. Plank.
A Survey of Corpora for Germanic Low-Resource Languages and Dialects.
24th Nordic Conference on Computational Linguistics (NoDaLiDa 2023). Tórshavn, Faroe Islands, 2023-05-22/2023-05-24.
arXiv.
[630]
V. Blaschke, H. Schütze and B. Plank.
Does Manipulating Tokenization Aid Cross-Lingual Transfer? A Study on POS Tagging for Non-Standardized Languages.
10th Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023) at the 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023). Dubrovnik, Croatia, 2023-05-02/2023-05-06.
PDF.
[629]
A. Bokhovkin and A. Dai.
Neural Part Priors: Learning to Optimize Part-Based Object Completion in RGB-D Scans.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, 2023-06-18/2023-06-23.
URL.
[628]
M. Bonafini, M. Fornasier and B. Schmitzer.
Data-driven entropic spatially inhomogeneous evolutionary games.
European Journal of Applied Mathematics 34.1 (2023).
DOI.
[627]
B. Bonnet, C. Cipriani, M. Fornasier and H. Huang.
A measure theoretical approach to the mean-field maximum principle for training NeurODEs.
Nonlinear Analysis 227 (2023).
DOI.
[626]
A. Chronopoulou, D. Stojanovski and A. Fraser.
Language-Family Adapters for Low-Resource Multilingual Neural Machine Translation.
6th Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2023) at the 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023). Dubrovnik, Croatia, 2023-05-02/2023-05-06.
arXiv.
[625]
S. Dandl, G. Casalicchio, B. Bischl and L. Bothmann.
Interpretable Regional Descriptors: Hyperbox-Based Local Explanations.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, 2023-09-18/2023-09-22.
arXiv.
[624]
S. Dandl, A. Hofheinz, M. Binder, B. Bischl and G. Casalicchio.
counterfactuals: An R Package for Counterfactual Explanation Methods.
Preprint at arXiv (2023).
arXiv.
[623]
E. Dorigatti, B. Bischl and D. Rügamer.
Frequentist Uncertainty Quantification in Semi-Structured Neural Networks.
26th International Conference on Artificial Intelligence and Statistics (AISTATS 2023). Valencia, Spain, 2023-04-25/2023-04-27.
URL.
[622]
E. Dorigatti, B. Schubert, B. Bischl and D. Rügamer.
Frequentist Uncertainty Quantification in Semi-Structured Neural Networks.
26th International Conference on Artificial Intelligence and Statistics (AISTATS 2023). Valencia, Spain, 2023-04-25/2023-04-27.
URL.
[621]
M. Eisenberger, A. Toker, L. Leal-Taixé and D. Cremers.
G-MSM: Unsupervised Multi-Shape Matching with Graph-based Affinity Priors.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, 2023-06-18/2023-06-23.
arXiv.
[620]
Y. Elazar, N. Kassner, S. Ravfogel, A. Feder, A. Ravichander, M. Mosbach, Y. Belinkov, H. Schütze and Y. Goldberg.
Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions.
Preprint at arXiv (2023).
arXiv.
[619]
A. Farshad, Y. Yeganeh and N. Navab.
Learning to learn in medical applications: A journey through optimization.
Meta-Learning with Medical Imaging and Health Informatics Applications. The MICCAI Society book Series (2023).
DOI.
[618]
M. Feurer, K. Eggensperger, E. Bergman, F. Pfisterer, B. Bischl and F. Hutter.
Mind the Gap: Measuring Generalization Performance Across Multiple Objectives.
21st International Symposium on Intelligent Data Analysis (IDA 2023). Louvain-la-Neuve, Belgium, 2023-04-12/2023-04-14.
DOI.
[617]
D. Frauen and S. Feuerriegel.
Estimating individual treatment effects under unobserved confounding using binary instruments.
11th International Conference on Learning Representations (ICLR 2023). Kigali, Rwanda, 2023-05-01/2023-05-05.
arXiv.
[616]
D. Frauen, T. Hatt, V. Melnychuk and S. Feuerriegel.
Estimating Average Causal Effects from Patient Trajectories.
37th Conference on Artificial Intelligence (AAAI 2023). Washington, DC, USA, 2023-02-07/2023-02-14.
arXiv.
[615]
C. Fritz, G. De Nicola, S. Kevork, D. Harhoff and G. Kauermann.
Modelling the large and dynamically growing bipartite network of German patents and inventors.
Journal of the Royal Statistical Society. Series A (Statistics in Society) OnlineFirst (2023).
DOI.
[614]
A. Giovagnoli, Y. Ma, M. Schubert and V. Tresp.
QNEAT: Natural Evolution of Variational Quantum Circuit Architecture.
Genetic and Evolutionary Computation Conference (GECCO 2023). Lisbon, Portugal, 2023-07-15/2023-07-19.
arXiv.
[613]
J. W. Grootjen, H. Weingärtner and S. Mayer.
Highlighting the Challenges of Blinks in Eye Tracking for Interactive Systems.
8th International Workshop on Pervasive Eye Tracking and Mobile Eye-Based Interaction (PETMEI 2023) at the ACM Symposium on Eye Tracking Research and Applications (ETRA 2023). Tübingen, Germany, 2023-05-30/2023-06-02.
DOI.
[612]
L. Haliburton, N. Bartłomiejczyk, A. Schmidt, P. W. Woźniak and J. Niess.
The Walking Talking Stick: Understanding Automated Note-Taking in Walking Meetings.
Conference on Human Factors in Computing Systems (CHI 2023). Hamburg, Germany, 2023-04-23/2023-04-28.
DOI.
[611]
L. Haliburton, S. Ghebremedhin, R. Welsch, A. Schmidt and Mayer.
Investigating Labeler Bias in Face Annotation for Machine Learning.
Preprint at arXiv (2023).
arXiv.
[610]
L. Haliburton, S. Kheirinejad, A. Schmidt and S. Mayer.
Exploring Smart Standing Desks to Foster a Healthier Workplace.
ACM Conference on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT 2023). Cancun, Mexico, 2023-10-08/2023-10-12.
DOI.
[609]
K. Hämmerl, B. Deiseroth, P. Schramowski, J. Libovický, C. A. Rothkopf, A. Fraser and K. Kersting.
Speaking Multiple Languages Affects the Moral Bias of Language Models.
Findings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, 2023-07-09/2023-07-14.
arXiv.
[608]
Z. Han, R. Liao, J. Gu, Y. Zhang, Z. Ding, Y. Gu, H. Köppl, H. Schütze and V. Tresp.
ECOLA: Enhanced Temporal Knowledge Embeddings with Contextualized Language Representations.
Findings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, 2023-07-09/2023-07-14, to appear.
arXiv.
[607]
L. Härenstam-Nielsen, N. Zeller and D. Cremers.
Semidefinite Relaxations for Robust Multiview Triangulation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, 2023-06-18/2023-06-23.
arXiv.
[606]
P. Heid.
A short note on an adaptive damped Newton method for strongly monotone and Lipschitz continuous operator equations.
Archiv der Mathematik (2023).
DOI.
[605]
G. Heinze, A.-L. Boulesteix, M. Kammer, T. P. Morris, I. R. White and the Simulation Panel of the STRATOS initiative the Simulation Panel of the STRATOS initiative.
Phases of methodological research in biostatistics—Building the evidence base for new methods.
Biometrical Journal (2023).
DOI.
[604]
M. Herrmann, F. Pfisterer and F. Scheipl.
A geometric framework for outlier detection in high-dimensional data.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery e1491 (2023).
DOI.
[603]
A. Imani, P. Lin, A. H. Kargaran, S. Severini, M. J. Sabet, N. Kassner, C. Ma, H. Schmid, A. F. T. Martins, F. Yvon and H. Schütze.
Glot500: Scaling Multilingual Corpora and Language Models to 500 Languages.
In Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, 2023-07-09/2023-07-14.
arXiv.
GitHub.
[602]
M. Klein, C. Leiber and C. Böhm.
k-SubMix: Common Subspace Clustering on Mixed-Type Data.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, 2023-09-18/2023-09-22.
[601]
C. Kolb, B. Bischl, C. L. Müller and D. Rügamer.
Sparse Modality Regression.
37th International Workshop on Statistical Modelling (IWSM 2023). Dortmund, Germany, 2023-07-17/2023-07-21.
PDF.
[600]
R. Koner, T. Hannan, S. Shit, S. Sharifzadeh, M. Schubert, T. Seidl and V. Tresp.
InstanceFormer: An online Video Instance Segmentation Framework.
37th Conference on Artificial Intelligence (AAAI 2023). Washington, DC, USA, 2023-02-07/2023-02-14.
arXiv.
GitHub.
[599]
G. König, T. Freiesleben and M. Grosse-Wentrup.
Improvement-focused causal recourse (ICR).
37th Conference on Artificial Intelligence (AAAI 2023). Washington, DC, USA, 2023-02-07/2023-02-14.
arXiv.
[598]
J. Kostin, F. Krahmer and D. Stöger.
How robust is randomized blind deconvolution via nuclear norm minimization against adversarial noise?.
Preprint at arXiv (2023).
arXiv.
[597]
Y. Liu, H. Ye, L. Weissweiler and H. Schütze.
Crosslingual Transfer Learning for Low-Resource Languages Based on Multilingual Colexification Graphs.
In Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, 2023-07-09/2023-07-14.
arXiv.
[596]
Z. Liu, Y. Ma, M. Schubert, Y. Ouyang, W. Rong and Z. Xiong.
Multimodal Contrastive Transformer for Explainable Recommendation.
IEEE Transactions on Computational Social Systems (2023).
DOI.
[595]
M. Lotfollahi, A. Klimovskaia Susmelj, C. De Donno, L. Hetzel, Y. Ji, I. L. Ibarra, S. R. Srivatsan, M. Naghipourfar, R. M. Daza, B. Martin, J. Shendure, J. L. McFaline-Figueroa, P. Boyeau, F. A. Wolf, N. Yakubova, S. Günnemann, C. Trapnell, D. Lopez-Paz and F. J. Theis.
Predicting cellular responses to complex perturbations in high-throughput screens.
Molecular Systems Biology 19.6 (2023).
DOI.
[594]
C. Luther, G. König and M. Grosse-Wentrup.
Efficient SAGE Estimation via Causal Structure Learning.
26th International Conference on Artificial Intelligence and Statistics (AISTATS 2023). Valencia, Spain, 2023-04-25/2023-04-27.
URL.
[593]
Y. Mansour and R. Heckel.
Zero-Shot Noise2Noise: Efficient Image Denoising without any Data.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, 2023-06-18/2023-06-23.
URL.
[592]
C. Molnar, G. König, B. Bischl and G. Casalicchio.
Model-agnostic feature importance and effects with dependent features: a conditional subgroup approach.
Data Mining and Knowledge Discovery (2023).
DOI.
[591]
J. Moosbauer, G. Casalicchio, M. Lindauer and B. Bischl.
Improving Accuracy of Interpretability Measures in Hyperparameter Optimization via Bayesian Algorithm Execution.
Workshop on Configuration and Selection of Algorithms (COSEAL 2023). Paris, France, 2023-03-06/2023-03-08.
arXiv.
[590]
T. Nagler.
Statistical Foundations of Prior-Data Fitted Networks.
40th International Conference on Machine Learning (ICML 2023). Honolulu, Hawaii, 2023-07-23/2023-07-29.
PDF.
[589]
E. Nie, S. Liang, H. Schmid and H. Schütze.
Cross-Lingual Retrieval Augmented Prompt for Low-Resource Languages.
In Proceedings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, 2023-07-09/2023-07-14.
arXiv.
[588]
C. Nießl, S. Hoffmann, T. Ullmann and A.-L. Boulesteix.
Explaining the optimistic performance evaluation of newly proposed methods: A cross-design validation experiment.
Biometrical Journal (2023).
DOI.
[587]
F. Ott, L. Heublein, D. Rügamer, B. Bischl and C. Mutschler.
Fusing Structure from Motion and Simulation-Augmented Pose Regression from Optical Flow for Challenging Indoor Environments.
Preprint at arXiv (2023).
arXiv.
[586]
R. Paolino, A. Bojchevski, S. Günnemann, G. Kutyniok and R. Levie.
Unveiling the Sampling Density in Non-Uniform Geometric Graphs.
11th International Conference on Learning Representations (ICLR 2023). Kigali, Rwanda, 2023-05-01/2023-05-05.
arXiv.
[585]
T. Pielok, B. Bischl and D. David.
Approximate Bayesian Inference with Stein Functional Variational Gradient Descent.
11th International Conference on Learning Representations (ICLR 2023). Kigali, Rwanda, 2023-05-01/2023-05-05.
URL.
[584]
M. Ploner, A. Buyx, J. Gempt, J. Gjorgjieva, R. Müller, J. Priller, D. Rückert, B. Wolfrum and S. N. Jacob.
Reengineering neurotechnology: placing patients first.
Nature Mental Health 1 (2023).
DOI.
[583]
K. Rath, D. Rügamer, B. Bischl, U. von Toussaint and C. Albert.
Dependent state space Student-t processes for imputation and data augmentation in plasma diagnostics.
Contributions to Plasma Physics 63.5-6 (2023).
DOI.
[582]
M. Rezaei, A. Vahidi, T. Elze, B. Bischl and M. Eslami.
Self-supervised Learning and Self-labeling Framework for Glaucoma Detection.
Investigative Ophthalmology and Visual Science 64.8 (2023), to appear.
[581]
L. Rottkamp, N. Strauss and M. Schubert.
DEAR: Dynamic Electric Ambulance Redeployment.
18th International Symposium on Spatial and Temporal Databases (SSTD 2023). Calgary, Canada, 2023-08-23/2023-08-25.
[580]
A. Roy Guha, S. Siddiqui, S. Pölsterl, A. Farshad, N. Navab and C. Wachinger.
Few-shot segmentation of 3D medical images.
Meta-Learning with Medical Imaging and Health Informatics Applications. The MICCAI Society book Series (2023).
DOI.
[579]
D. Rügamer.
A New PHO-rmula for Improved Performance of Semi-Structured Networks.
40th International Conference on Machine Learning (ICML 2023). Honolulu, Hawaii, 2023-07-23/2023-07-29.
arXiv.
[578]
D. Rügamer, P. Baumann, T. Kneib and T. Hothorn.
Probabilistic Time Series Forecasts with Autoregressive Transformation Models.
Statistics and Computing 33.2 (2023).
DOI.
[577]
D. Rügamer, C. Kolb and N. Klein.
Semi-Structured Distributional Regression.
American Statistician (2023).
DOI.
[576]
D. Rügamer, R. Shen, C. Bukas, L. B. de Andrade e Sousa, D. Thalmeier, N. Klein, C. Kolb, F. Pfisterer, P. Kopper, B. Bischl and C. L. Müller.
deepregression: a Flexible Neural Network Framework for Semi-Structured Deep Distributional Regression.
Journal of Statistical Software (2023).
DOI.
[575]
A. Scagliotti.
Optimal control of ensembles of dynamical systems.
ESAIM - Control, Optimisation and Calculus of Variations 29.22 (2023).
DOI.
[574]
S. Schäfer, D. F. Henning and S. Leutenegger.
GloPro: Globally-Consistent Uncertainty-Aware 3D Human Pose Estimation and Tracking in the Wild.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023). Detroit, MI, USA, 2023-10-01/2023-10-05, submitted.
[573]
L. Schneider, B. Bischl and J. Thomas.
Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models.
Genetic and Evolutionary Computation Conference (GECCO 2023). Lisbon, Portugal, 2023-07-15/2023-07-19, to appear.
[572]
J. Seidenschwarz, G. Braso, I. Elezi and L. Leal-Taixé.
Simple Cues Lead to a Strong Multi-Object Tracker.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, 2023-06-18/2023-06-23.
arXiv.
[571]
A. T. Stüber, S. Coors, B. Schachtner, T. Weber, D. Rügamer, A. Bender, A. Mittermeier, O. Öcal, M. Seidensticker, J. Ricke, B. Bischl and M. Ingrisch.
A comprehensive machine learning benchmark study for radiomics-based survival analysis of CT imaging data in patients with hepatic metastases of CRC.
Investigative Radiology (2023).
DOI.
[570]
N. Tathawadekar, N. A. K Doan, C. F. Silva and N. Thuerey.
Hybrid neural network pde solvers for reacting flows.
11th International Conference on Learning Representations (ICLR 2023). Kigali, Rwanda, 2023-05-01/2023-05-05.
arXiv.
[569]
Ladner, Tobias and Althoff, Matthias.
Automatic Abstraction Refinement in Neural Network Verification Using Sensitivity Analysis.
26th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2023). San Antonio, TX, USA, 2023-05-09/2023-05-12.
DOI.
[568]
T. Ullmann, S. Peschel, P. Finger, C. Müller and A.-L. Boulesteix.
Over-optimism in unsupervised microbiome analysis: Insights from network learning and clustering.
PLOS Computational Biology (2023).
DOI.
[567]
T. Weber, M. Ingrisch, B. Bischl and D. Rügamer.
Cascaded Latent Diffusion Models for High-Resolution Chest X-ray Synthesis.
27th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2023). Osaka, Japan, 2023-05-25/2023-05-28.
DOI.
[566]
H. Weerts, F. Pfisterer, M. Feurer, K. Eggensperger, E. Bergman, N. Awad, J. Vanschoren, M. Pechenizkiy, B. Bischl and F. Hutter.
Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML.
Preprint at arXiv (2023).
arXiv.
[565]
L. Weissweiler, T. He, N. Otani, D. R. Mortensen, L. Levin and H. Schütze.
Construction Grammar Provides Unique Insight into Neural Language Models.
Georgetown University Round Table on Linguistics (GURT 2023). Washington D.C., USA, 2023-03-09/2023-03-12.
[564]
J. G. Wiese, L. Wimmer, T. Papamarkou, B. Bischl, S. Günnemann and D. Rügamer.
Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, 2023-09-18/2023-09-22.
arXiv.
[563]
L. Wimmer, Y. Sale, P. Hofman, B. Bischl and E. Hüllermeier.
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?.
39th Conference on Uncertainty in Artificial Intelligence (UAI 2023). Pittsburgh, PA, USA, 2023-08-01/2023-08-03.
[562]
M. Windl, A. Scheidle, C. George and S. Mayer.
Investigating Security Indicators for Hyperlinking Within the Metaverse.
19th Symposium on Usable Privacy and Security (SOUPS 2023). Anaheim, CA, USA, 2023-08-06/2023-08-08.
.
[561]
M. Windl, A. Schmidt and S. S. Feger.
Investigating Tangible Privacy-Preserving Mechanisms for Future Smart Homes.
Conference on Human Factors in Computing Systems (CHI 2023). Hamburg, Germany, 2023-04-23/2023-04-28.
DOI.
[560]
M. Windl, V. Winterhalter, A. Schmidt and S. Mayer.
Understanding and Mitigating Technology-Facilitated Privacy Violations in the Physical World.
Conference on Human Factors in Computing Systems (CHI 2023). Hamburg, Germany, 2023-04-23/2023-04-28.
DOI.
[559]
D. Winkel, N. Strauß, M. Schubert, Y. Ma and T. Seidl.
Constrained Portfolio Management using Action Space Decomposition for Reinforcement Learning.
27th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2023). Osaka, Japan, 2023-05-25/2023-05-28.
DOI.
[558]
Y. Zhang, Y. Ma, T. Seidl and V. Tresp.
Adaptive Multi-Resolution Attention with Linear Complexity.
International Joint Conference on Neural Networks (IJCNN 2023). Gold Coast Convention and Exhibition Centre, Queensland, Australia, 2023-07-18/2023-07-23.
arXiv.
[557]
L. Zumeta-Olaskoaga, M. Weigert, J. Larruskain, E. Bikandi, J. Setuain, J. Lekue, H. Küchenhoff and D. J. Lee.
Prediction of sports injuries in football: a recurrent time-to-event approach using regularized Cox models.
Advances in Statistical Analysis 107 (2023).
DOI.
[556]
X. Zuo, N. Yang, N. Merrill, B. Xu and S. Leutenegger.
Incremental Dense Reconstruction from Monocular Video with Guided Sparse Feature Volume Fusion.
IEEE Robotics and Automation Letters (2023).
DOI.
2018
[10]
G. Casalicchio, C. Molnar and B. Bischl.
Visualizing the feature importance for black box models.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2018). Dublin, Ireland, 2018-09-10/2018-09-14.
DOI.
[9]
D. Kühn, P. Probst, J. Thomas and B. Bischl.
Automatic Exploration of Machine Learning Experiments on OpenML.
Preprint at arXiv (2018).
arXiv.
[8]
M. Lotfollahi, F. A. Wolf and F. J. Theis.
Generative Modeling and Latent Space Arithmetics Predict Single-Cell Perturbation Response across Cell Types, Studies and Species.
Preprint at bioRxiv (2018).
DOI.
[7]
I. van Mechelen, A.-L. Boulesteix, R. Dangl, N. Dean, I. Guyon, C. Hennig, F. Leisch and D. Steinley.
Benchmarking in cluster analysis: A white paper.
Preprint at arXiv (2018).
arXiv.
[6]
J. Minkwitz, F. Scheipl, E. Binder, C. Sander, U. Hegerl and H. Himmerich.
Generalised functional additive models for brain arousal state dynamics (Poster).
20th International Pharmaco-EEG Society for Preclinical and Clinical Electrophysiological Brain Research Meeting (IPEG 2018). Zurich, Switzerland, 2018-11-21/2018-11-25.
[5]
C. Molnar, G. Casalicchio and B. Bischl.
iml: An R package for interpretable machine learning.
The Journal of Open Source Software 3.26 (2018).
DOI.
[4]
J. N. van Rijn, F. Pfisterer, J. Thomas, A. Muller, B. Bischl and J. Vanschoren.
Meta learning for defaults: Symbolic defaults.
Workshop on Meta-Learning (MetaLearn 2018) at the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018). Montréal, Canada, 2018-12-03/2018-12-08.
PDF.
[3]
D. Rügamer, S. Brockhaus, K. Gentsch, K. Scherer and S. Greven.
Boosting factor-specific functional historical models for the detection of synchronization in bioelectrical signals.
Journal of the Royal Statistical Society. Series C (Applied Statistics) 67.3 (2018).
DOI.
[2]
D. Schalk, J. Thomas and B. Bischl.
compboost: Modular Framework for Component-wise Boosting.
The Journal of Open Source Software 3.30 (2018).
[1]
J. Thomas, S. Coors and B. Bischl.
Automatic gradient boosting.
Preprint at arXiv (2018).
arXiv.