2024
[1132]
A. Bashardoust, S. Feuerriegel and Y. R. Shrestha.
Comparing the Willingness to Share for Human-generated vs. AI-generated Fake News.
27th ACM Conference on Computer-Supported Cooperative Work and Social Computing (CSCW 2024). San José, Costa Rica, Nov 09-13, 2024. To be published. Preprint at arXiv.
arXiv.
[1131]
P. Mondorf and B. Plank.
Beyond Accuracy: Evaluating the Reasoning Behavior of Large Language Models--A Survey.
Conference on Language Modeling (COLM 2024). Philadelphia, PA, USA, Oct 07-09, 2024. To be published. Preprint at arXiv.
arXiv.
[1130]
F. Bongratz, J. Fecht, A.-M. Rickmann and C. Wachinger.
V2C-Long: Longitudinal Cortex Reconstruction with Spatiotemporal Correspondence.
27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2024). Marrakesh, Morocco, Oct 06-10, 2024. To be published. Preprint at arXiv.
arXiv.
[1129]
P. Scholl, M. Iskandar, S. Wolf, J. Lee, A. Bacho, A. Dietrich, A. Albu-Schäffer and G. Kutyniok.
Learning-based adaption of robotic friction models.
Robotics and Computer-Integrated Manufacturing 89 (Oct. 2024).
DOI.
[1128]
Y. Weiss, S. Villa, J. W. Grootjen, M. Hoppe, Y. Kale and F. Müller.
Exploring Redirection and Shifting Techniques to Mask Hand Movements from Shoulder-Surfing Attacks during PIN Authentication in Virtual Reality.
ACM International Conference on Mobile Human-Computer Interaction (MobileHCI 2024). Melbourne, Australia, Sep 30-Oct 03, 2024. To be published.
[1127]
M. Windl, M. Schlegel and S. Mayer.
Exploring Users’ Mental Models and Privacy Concerns During Interconnected Interactions.
ACM International Conference on Mobile Human-Computer Interaction (MobileHCI 2024). Melbourne, Australia, Sep 30-Oct 03, 2024. To be published.
[1126]
J. W. Grootjen, P. Thallhammer and T. Kosch.
Your Eyes on Speed: Using Pupil Dilation to Adaptively Select Speed-Reading Parameters in Virtual Reality.
ACM International Conference on Mobile Human-Computer Interaction (MobileHCI 2024). Melbourne, Australia, Sep 30-Oct 03, 2024. To be published. Preprint available.
PDF.
GitHub.
[1125]
T. Hannan, M. M. Islam, T. Seidl and G. Bertasius.
RGNet: A Unified Retrieval and Grounding Network for Long Videos.
18th European Conference on Computer Vision (ECCV 2024). Milano, Italy, Sep 29-Oct 04, 2024. To be published. Preprint at arXiv.
arXiv.
[1124]
G. Zhai, E. P. Örnek, D. Z. Chen, R. Liao, Y. Di, N. Navab, F. Tombari and B. Busam.
EchoScene: Indoor Scene Generation via Information Echo over Scene Graph Diffusion.
18th European Conference on Computer Vision (ECCV 2024). Milano, Italy, Sep 29-Oct 04, 2024. To be published. Preprint at arXiv.
arXiv.
[1123]
H. Baniecki, G. Casalicchio, B. Bischl and P. Biecek.
On the Robustness of Global Feature Effect Explanations.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2024). Vilnius, Lithuania, Sep 09-13, 2024.
DOI.
[1122]
C. Damke and E. Hüllermeier.
CUQ-GNN: Committee-Based Graph Uncertainty Quantification Using Posterior Networks.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2024). Vilnius, Lithuania, Sep 09-13, 2024.
DOI.
[1121]
R. Fischer, M. Wever, S. Buschjäger and T. Liebig.
MetaQuRe: Meta-learning from Model Quality and Resource Consumption.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2024). Vilnius, Lithuania, Sep 09-13, 2024.
DOI.
[1120]
S. Gilhuber, A. Beer, Y. Ma and T. Seidl.
FALCUN: A Simple and Efficient Deep Active Learning Strategy.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2024). Vilnius, Lithuania, Sep 09-13, 2024.
DOI.
[1119]
P. Jahn, C. M. M. Frey, A. Beer, C. Leiber and T. Seidl.
Data with Density-Based Clusters: A Generator for Systematic Evaluation of Clustering Algorithms.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2024). Vilnius, Lithuania, Sep 09-13, 2024.
DOI.
[1118]
Y. Liu, E. Nie, S. Feng, Z. Hua, Z. Ding, D. Wang, Y. Zhang and H. Schütze.
A Unified Data Augmentation Framework for Low-Resource Multi-Domain Dialogue Generation.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2024). Vilnius, Lithuania, Sep 09-13, 2024.
DOI.
GitHub.
[1117]
F. Stermann, I. Chalkidis, A. Vahidi, B. Bischl and M. Rezaei.
Attention-Driven Dropout: A Simple Method to Improve Self-supervised Contrastive Sentence Embeddings.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2024). Vilnius, Lithuania, Sep 09-13, 2024.
DOI.
[1116]
A. Vahidi, L. Wimmer, H. A. Gündüz, B. Bischl, E. Hüllermeier and M. Rezaei.
Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation Learning.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2024). Vilnius, Lithuania, Sep 09-13, 2024.
DOI.
[1115]
A. Maldonado, C. M. M. Frey, G. M. Tavares, N. Rehwald and T. Seidl.
GEDI: Generating Event Data with Intentional Features for Benchmarking Process Mining.
22nd International Conference on Business Process Management (BPM 2024). Krakow, Poland, Sep 01-06, 2024. To be published. Preprint available.
PDF.
[1114]
A. Maarouf, S. Feuerriegel and N. Pröllochs.
A fused large language model for predicting startup success.
Preprint at arXiv (Sep. 2024).
arXiv.
[1113]
J. Pavlopoulos, V. Kougia, E. Garces Arias, P. Platanou, S. Shabalin, K. Liagkou, E. Papadatos, H. Essler, J.-B. Camps and F. Fischer.
Challenging Error Correction in Recognised Byzantine Greek.
1st Workshop on Machine Learning for Ancient Languages (ML4AL 2024) at the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1112]
A. Yüksel, A. Köksal, L. K. Senel, A. Korhonen and H. Schütze.
TurkishMMLU: Measuring Massive Multitask Language Understanding in Turkish.
1st Workshop on Natural Language Processing for Turkic Languages (SIGTURK 2024) at the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024. Invited talk.
arXiv.
[1111]
M. Windl, J. Leusmann, A. Schmidt, S. S. Feger and S. Mayer.
Privacy Communication Patterns for Domestic Robots.
20th Symposium on Usable Privacy and Security (SOUPS 2024). Philadelphia, PA, USA, Aug 11-13, 2024. To be published.
[1110]
V. Blaschke, C. Purschke, H. Schütze and B. Plank.
What Do Dialect Speakers Want? A Survey of Attitudes Towards Language Technology for German Dialects.
62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1109]
A. H. Kargaran, F. Yvon and H. Schütze.
MaskLID: Code-Switching Language Identification through Iterative Masking.
62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
GitHub.
[1108]
T. Liu, I. Škrjanec and V. Demberg.
Temperature-scaling surprisal estimates improve fit to human reading times – but does it do so for the 'right reasons'?.
62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1107]
Y. Liu, C. Ma, H. Ye and H. Schütze.
TransliCo: A Contrastive Learning Framework to Address the Script Barrier in Multilingual Pretrained Language Models.
62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1106]
P. Mondorf and B. Plank.
Comparing Inferential Strategies of Humans and Large Language Models in Deductive Reasoning.
62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1105]
P. Röttger, V. Hofmann, V. Pyatkin, M. Hinck, H. R. Kirk, H. Schütze and D. Hovy.
Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models.
62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1104]
L. K. Senel, B. Fetahu, D. Yoshida, Z. Chen, G. Castellucci, N. Vedula, J. I. Choi and S. Malmasi.
Generative Explore-Exploit: Training-free Optimization of Generative Recommender Systems using LLM Optimizers.
62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1103]
C. Tomani, D. Vilar, M. Freitag, C. Cherry, S. Naskar, M. Finkelstein, X. Garcia and D. Cremers.
Quality-Aware Translation Models: Efficient Generation and Quality Estimation in a Single Model.
62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1102]
L. Weber-Genzel, S. Peng, M.-C. de Marneffe and B. Plank.
VariErr NLI: Separating Annotation Error from Human Label Variation.
62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1101]
S. Xu, S. T.y.s.s, O. Ichim, I. Risini, B. Plank and M. Grabmair.
Through the Lens of Split Vote: Exploring Disagreement, Difficulty and Calibration in Legal Case Outcome Classification.
62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1100]
M. Aßenmacher, A. Stephan, L. Weissweiler, E. Çano, I. Ziegler, M. Härttrich, B. Bischl, B. Roth, C. Heumann and H. Schütze.
Collaborative Development of Modular Open Source Educational Resources for Natural Language Processing.
6th Workshop on Teaching NLP (TeachingNLP 2024) at the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1099]
L. Christ, S. Amiriparian, M. Milling, I. Aslan and B. W. Schuller.
Modeling Emotional Trajectories in Written Stories Utilizing Transformers and Weakly-Supervised Learning.
Findings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1098]
W. Lai, M. Mesgar and A. Fraser.
LLMs Beyond English: Scaling the Multilingual Capability of LLMs with Cross-Lingual Feedback.
Findings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1097]
A. Maarouf, D. Bär, D. Geissler and S. Feuerriegel.
HQP: A human-annotated dataset for detecting online propaganda.
Findings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1096]
X. Wang, B. Ma, C. Hu, L. Weber-Genzel, P. Röttger, F. Kreuter, D. Hovy and B. Plank.
My Answer is C: First-Token Probabilities Do Not Match Text Answers in Instruction-Tuned Language Models.
Findings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1095]
P. Wicke and L. Wachowiak.
Exploring Spatial Schemas in Large Language Models.
Findings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1094]
S. Yuan, E. Nie, M. Färber, H. Schmid and H. Schütze.
GNNAVI: Navigating the Information Flow in Large Language Models by Graph Neural Network.
Findings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1093]
M. Zhang, V. Gautam, M. Wang, J. O. Alabi, X. Shen, D. Klakow and M. Mosbach.
The Impact of Demonstrations on Multilingual In-Context Learning: A Multidimensional Analysis.
Findings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1092]
A. Dimmelmeier, H. C. Doll, M. Schierholz, E. Kormanyos, M. Fehr, B. Ma, J. Beck, A. Fraser and F. Kreuter.
Informing climate risk analysis using textual information - A research agenda.
Workshop Natural Language Processing meets Climate Change (ClimateNLP 2024) at the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1091]
B. Ma.
Evaluating Lexical Aspect with Large Language Models.
Workshop on Cognitive Modeling and Computational Linguistics (CMCL 2024) at the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024). Bangkok, Thailand, Aug 11-16, 2024.
URL.
[1090]
J. G. Wiese, L. Wimmer, T. Papamarkou, B. Bischl, S. Günnemann and D. Rügamer.
Towards Efficient Posterior Sampling in Deep Neural Networks via Symmetry Removal (Extended Abstract).
33rd International Joint Conference on Artificial Intelligence (IJCAI 2024). Jeju, Korea, Aug 03-09, 2024. To be published.
[1089]
P. Wicke, L. Hirlimann and J. M. Cunha.
Using Analogical Reasoning to Prompt LLMs for their Intuitions of Abstract Spatial Schemas.
Analogy-ANGLE Workshop at the 33rd International Joint Conference on Artificial Intelligence (IJCAI 2024). Jeju, Korea, Aug 03-09, 2024. To be published.
[1088]
K. Ahn, A. Jadbabaie and S. Sra.
How to Escape Sharp Minima with Random Perturbations.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1087]
K. Bouchiat, A. Immer, H. Yèche, G. Ratsch and V. Fortuin.
Improving Neural Additive Models with Bayesian Principles.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1086]
X. Cheng, Y. Chen and S. Sra.
Transformers Implement Functional Gradient Descent to Learn Non-Linear Functions In Context.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1085]
T. Decker, A. R. Bhattarai, J. Gu, V. Tresp and F. Buettner.
Provably Better Explanations with Optimized Aggregation of Feature Attributions.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1084]
S. Eckman, B. Plank and F. Kreuter.
Position: Insights from Survey Methodology can Improve Training Data.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1083]
D. Frauen, V. Melnychuk and S. Feuerriegel.
Fair Off-Policy Learning from Observational Data.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1082]
D. Fuchsgruber, T. Wollschläger, B. Charpentier, A. Oroz and S. Günnemann.
Uncertainty for Active Learning on Graphs.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1081]
F. Fumagalli, M. Muschalik, P. Kolpaczki, E. Hüllermeier and B. Hammer.
KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1080]
K. Gatmiry, Z. Li, S. J. Reddi and S. Jegelka.
Simplicity Bias via Global Convergence of Sharpness Minimization.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1079]
K. Gatmiry, N. Saunshi, S. J. Reddi, S. Jegelka and S. Kumar.
Can Looped Transformers Learn to Implement Multi-step Gradient Descent for In-context Learning?.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1078]
M. Herrmann, F. J. D. Lange, K. Eggensperger, G. Casalicchio, M. Wever, M. Feurer, D. Rügamer, E. Hüllermeier, A.-L. Boulesteix and B. Bischl.
Position: Why We Must Rethink Empirical Research in Machine Learning.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1077]
P. Holl and N. Thuerey.
Φ-Flow: Differentiable Simulations for PyTorch, TensorFlow and Jax.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1076]
M. Juergens, N. Meinert, V. Bengs, E. Hüllermeier and W. Waegeman.
Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1075]
G. Kaissis, S. Kolek, B. Balle, J. Hayes and D. Rückert.
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1074]
K. Lin and R. Heckel.
Robustness of Deep Learning for Accelerated MRI: Benefits of Diverse Training Data.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1073]
M. Lindauer, F. Karl, A. Klier, J. Moosbauer, A. Tornede, A. C. Mueller, F. Hutter, M. Feurer and B. Bischl.
Position: A Call to Action for a Human-Centered AutoML Paradigm.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1072]
C. Morris, F. Frasca, N. Dym, H. Maron, I. I. Ceylan, R. Levie, D. Lim, M. M. Bronstein, M. Grohe and S. Jegelka.
Position: Future Directions in the Theory of Graph Machine Learning.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1071]
T. Papamarkou, M. Skoularidou, K. Palla, L. Aitchison, J. Arbel, D. Dunson, M. Filippone, V. Fortuin, P. Hennig, J. M. H. Lobato, A. Hubin, A. Immer, T. Karaletsos, M. E. Khan, A. Kristiadi, Y. , S. Mandt, C. Nemeth, M. A. Osborne, T. G. J. Rudner, D. Rügamer, Y. W. Teh, M. Welling, A. G. Wilson and R. Zhang.
Position: Bayesian Deep Learning in the Age of Large-Scale AI.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1070]
D. Rügamer, C. Kolb, T. Weber, L. Kook and T. Nagler.
Generalizing orthogonalization for models with non-linearities.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1069]
Y. Sale, V. Bengs, M. Caprio and E. Hüllermeier.
Second-Order Uncertainty Quantification: A Distance-Based Approach.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1068]
J. Schweisthal, D. Frauen, M. van der Schaar and S. Feuerriegel.
Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1067]
Y. Shen, N. Daheim, B. Cong, P. Nickl, G. M. Marconi, C. Bazan, R. Yokota, I. Gurevych, D. Cremers, M. E. Khan and T. Möllenhoff.
Variational Learning is Effective for Large Deep Networks.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
GitHub.
[1066]
E. Sommer, L. Wimmer, T. Papamarkou, L. Bothmann, B. Bischl and D. Rügamer.
Connecting the Dots: Is Mode Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1065]
B. Tahmasebi and S. Jegelka.
Sample Complexity Bounds for Estimating Probability Divergences under Invariances.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1064]
B. Tahmasebi, A. Soleymani, D. Bahri, S. Jegelka and P. Jaillet.
A Universal Class of Sharpness-Aware Minimization Algorithms.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1063]
D. Tramontano, Y. Kivva, S. Salehkaleybar, M. Drton and N. Kiyavash.
Causal Effect Identification in LiNGAM Models with Latent Confounders.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1062]
T. Wollschläger, N. Kemper, L. Hetzel, J. Sommer and S. Günnemann.
Expressivity and Generalization: Fragment-Biases for Molecular GNNs.
41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024.
URL.
[1061]
Y. Sun, J. Liu, Z. Wu, Z. Ding, Y. Ma, T. Seidl and V. Tresp.
SA-DQAS: Self-attention Enhanced Differentiable Quantum Architecture Search.
Workshop Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators at the 41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024. To be published. Preprint at arXiv.
arXiv.
[1060]
U. Fischer Abaigar, C. Kern and F. Kreuter.
The Missing Link: Allocation Performance in Causal Machine Learning.
Workshop Humans, Algorithmic Decision-Making and Society: Modeling Interactions and Impact at the 41st International Conference on Machine Learning (ICML 2024). Vienna, Austria, Jul 21-27, 2024. To be published. Preprint at arXiv.
arXiv.
[1059]
F. K. Ewald, L. Bothmann, M. N. Wright, B. Bischl, G. Casalicchio and G. König.
A Guide to Feature Importance Methods for Scientific Inference.
2nd World Conference on Explainable Artificial Intelligence (xAI 2024). Valletta, Malta, Jul 17-19, 2024.
DOI.
[1058]
D. Rundel, J. Kobialka, C. von Crailsheim, M. Feurer, T. Nagler and D. Rügamer.
Interpretable Machine Learning for TabPFN.
2nd World Conference on Explainable Artificial Intelligence (xAI 2024). Valletta, Malta, Jul 17-19, 2024.
DOI.
GitHub.
[1057]
S. Dandl, M. Becker, B. Bischl, G. Casalicchio and L. Bothmann.
mlr3summary: Concise and interpretable summaries for machine learning models.
Demo Track of the 2nd World Conference on Explainable Artificial Intelligence (xAI 2024). Valletta, Malta, Jul 17-19, 2024.
arXiv.
[1056]
C. Damke and E. Hüllermeier.
Linear Opinion Pooling for Uncertainty Quantification on Graphs.
40th Conference on Uncertainty in Artificial Intelligence (UAI 2024). Barcelona, Spain, Jul 16-18, 2024. To be published. Preprint available.
URL.
GitHub.
[1055]
N. Franco, J. Spiegelberg, J. M. Lorenz and S. Günnemann.
Guaranteeing Robustness Against Real-World Perturbations In Time Series Classification Using Conformalized Randomized Smoothing.
40th Conference on Uncertainty in Artificial Intelligence (UAI 2024). Barcelona, Spain, Jul 16-18, 2024. To be published. Preprint available.
URL.
[1054]
L. Kook, P. Schiele, C. Kolb, D. Dold, M. Arpogaus, C. Fritz, P. Baumann, P. Kopper, T. Pielok, E. Dorigatti and D. Rügamer.
How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression.
40th Conference on Uncertainty in Artificial Intelligence (UAI 2024). Barcelona, Spain, Jul 16-18, 2024. To be published. Preprint available.
URL.
[1053]
Y. Sale, P. Hofman, T. Löhr, L. Wimmer, T. Nagler and E. Hüllermeier.
Label-wise Aleatoric and Epistemic Uncertainty Quantification.
40th Conference on Uncertainty in Artificial Intelligence (UAI 2024). Barcelona, Spain, Jul 16-18, 2024. To be published. Preprint available.
URL.
[1052]
S. Dandl, M. Becker, B. Bischl, G. Casalicchio and L. Bothmann.
mlr3summary: Concise and interpretable summaries for machine learning models.
International R User Conference (useR! 2024). Salzburg, Austria, Jul 08-22, 2024.
arXiv.
GitHub.
[1051]
S. Fischer and M. Binder.
mlr3torch - Deep Learning in R.
International R User Conference (useR! 2024). Salzburg, Austria, Jul 08-22, 2024.
GitHub.
[1050]
B. Ronval, S. Nijssen and L. Bothmann.
Can generative AI-based data balancing mitigate unfairness issues in Machine Learning?.
3rd European Workshop on Algorithmic Fairness (EWAF 2024). Mainz, Germany, Jul 01-03, 2024. To be published.
[1049]
M. Windl and S. S. Feger.
Designing Interactive Privacy Labels for Advanced Smart Home Device Configuration Options.
ACM Conference on Designing Interactive Systems (DIS 2024). Copenhagen, Denmark, Jul 01-05, 2024.
DOI.
[1048]
C. Mayrink Verdun, O. Melnyk, F. Krahmer and P. Jung.
Fast, blind, and accurate: Tuning-free sparse regression with global linear convergence.
37th Annual Conference on Learning Theory (COLT 2024). Edmonton, Canada, Jun 30-Jul 03, 2024.
URL.
[1047]
C. Cipriani, A. Scagliotti and T. Wöhrer.
A minimax optimal control approach for robust neural ODEs.
European Control Conference (ECC 2024). Stockholm, Sweden, Jun 25-28, 2024. To be published. Preprint at arXiv.
arXiv.
[1046]
H. Chen, J. Büssing, D. Rügamer and E. Nie.
Leveraging (Sentence) Transformer Models with Contrastive Learning for Identifying Machine-Generated Text.
18th International Workshop on Semantic Evaluation (SemEval 2024) co-located with the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024). Mexico City, Mexico, Jun 20-21, 2024.
URL.
[1045]
M. Ghahremani, M. Khateri, B. Jian, B. Wiestler, E. Adeli and C. Wachinger.
H-ViT: A Hierarchical Vision Transformer for Deformable Image Registration.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024.
PDF.
[1044]
N. Müller, K. Schwarz, B. Rössle, L. Porzi, S. R. Bulò, M. Nießner and P. Kontschieder.
MultiDiff: Consistent Novel View Synthesis from a Single Image.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024.
URL.
[1043]
S. Aneja, J. Thies, A. Dai and M. Nießner.
FaceTalk: Audio-Driven Motion Diffusion for Neural Parametric Head Models.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1042]
L. Bastian, Y. Xie, N. Navab and Z. Lähner.
Hybrid Functional Maps for Crease-Aware Non-Isometric Shape Matching.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1041]
M. Brahimi, B. Haefner, Z. Ye, B. Goldluecke and D. Cremers.
Sparse Views, Near Light: A Practical Paradigm for Uncalibrated Point-light Photometric Stereo.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1040]
A.-Q. Cao, A. Dai and R. de Charette.
PaSCo: Urban 3D Panoptic Scene Completion with Uncertainty Awareness.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
GitHub.
[1039]
D. Cao, M. Eisenberger, N. E. Amrani, D. Cremers and F. Bernard.
Spectral Meets Spatial: Harmonising 3D Shape Matching and Interpolation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1038]
W. Cao, C. Luo, B. Zhang, M. Nießner and J. Tang.
Motion2VecSets: 4D Latent Vector Set Diffusion for Non-rigid Shape Reconstruction and Tracking.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
GitHub.
[1037]
D. Z. Chen, H. Li, H.-Y. Lee, S. Tulyakov and M. Nießner.
SceneTex: High-Quality Texture Synthesis for Indoor Scenes via Diffusion Priors.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1036]
Y. Chen, Y. Di, G. Zhai, F. Manhardt, C. Zhang, R. Zhang, F. Tombari, N. Navab and B. Busam.
SecondPose: SE(3)-Consistent Dual-Stream Feature Fusion for Category-Level Pose Estimation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1035]
C. Diller and A. Dai.
CG-HOI: Contact-Guided 3D Human-Object Interaction Generation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1034]
C. Diller, T. Funkhouser and A. Dai.
FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Observations.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1033]
V. Ehm, M. Gao, P. Roetzer, M. Eisenberger, D. Cremers and F. Bernard.
Partial-to-Partial Shape Matching with Geometric Consistency.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1032]
S. Giebenhain, T. Kirschstein, M. Georgopoulos, M. Rünz, L. Agapito and M. Nießner.
MonoNPHM: Dynamic Head Reconstruction from Monocular Videos.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1031]
K. Han, D. Muhle, F. Wimbauer and D. Cremers.
Boosting Self-Supervision for Single-View Scene Completion via Knowledge Distillation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1030]
L. Höllein, A. Božič, N. Müller, D. Novotny, H.-Y. Tseng, C. Richardt, M. Zollhöfer and M. Nießner.
ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1029]
J. Huang, H. Yu, K.-T. Yu, N. Navab, S. Ilic and B. Busam.
MatchU: Matching Unseen Objects for 6D Pose Estimation from RGB-D Images.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1028]
H. Jung, G. Zhai, S.-C. Wu, P. Ruhkamp, H. Schieber, G. Rizzoli, P. Wang, H. Zhao, L. Garattoni, S. Meier, D. Roth, N. Navab and B. Busam.
HouseCat6D -- A Large-Scale Multi-Modal Category Level 6D Object Perception Dataset with Household Objects in Realistic Scenarios.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1027]
T. Kirschstein, S. Giebenhain and M. Nießner.
DiffusionAvatars: Deferred Diffusion for High-fidelity 3D Head Avatars.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1026]
P. Kocsis, J. Philip, K. Sunkavalli, M. Nießner and Y. Hold-Geoffroy.
LightIt: Illumination Modeling and Control for Diffusion Models.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1025]
P. Kocsis, V. Sitzmann and M. Nießner.
Intrinsic Image Diffusion for Indoor Single-view Material Estimation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1024]
H. Li, C. Shen, P. Torr, V. Tresp and J. Gu.
Self-Discovering Interpretable Diffusion Latent Directions for Responsible Text-to-Image Generation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
GitHub.
[1023]
L. Li and A. Dai.
GenZI: Zero-Shot 3D Human-Scene Interaction Generation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1022]
S. Niedermayr, J. Stumpfegger and R. Westermann.
Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1021]
S. Qian, T. Kirschstein, L. Schoneveld, D. Davoli, S. Giebenhain and M. Nießner.
GaussianAvatars: Photorealistic Head Avatars with Rigged 3D Gaussians.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1020]
C. Reich, B. Debnath, D. Patel, T. Prangemeier, D. Cremers and S. Chakradhar.
Deep Video Codec Control for Vision Models.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1019]
C. Reich, O. Hahn, D. Cremers, S. Roth and B. Debnath.
A Perspective on Deep Vision Performance with Standard Image and Video Codecs.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1018]
D. Rozenberszki, O. Litany and A. Dai.
UnScene3D: Unsupervised 3D Instance Segmentation for Indoor Scenes.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1017]
Y. Siddiqui, A. Alliegro, A. Artemov, T. Tommasi, D. Sirigatti, V. Rosov, A. Dai and M. Nießner.
MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1016]
J. Tang, A. Dai, Y. Nie, L. Markhasin, J. Thies and M. Niessner.
DPHMs: Diffusion Parametric Head Models for Depth-based Tracking.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1015]
J. Tang, Y. Nie, L. Markhasin, A. Dai, J. Thies and M. Nießner.
DiffuScene: Denoising Diffusion Models for Generative Indoor Scene Synthesis.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1014]
A. Toker, M. Eisenberger, D. Cremers and L. Leal-Taixé.
SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1013]
S. Weber, T. Dagès, M. Gao and D. Cremers.
Finsler-Laplace-Beltrami Operators with Application to Shape Analysis.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1012]
S. Weber, B. Zöngür, N. Araslanov and D. Cremers.
Flattening the Parent Bias: Hierarchical Semantic Segmentation in the Poincaré Ball.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1011]
F. Wimbauer, B. Wu, E. Schoenfeld, X. Dai, J. Hou, Z. He, A. Sanakoyeu, P. Zhang, S. Tsai, J. Kohler, C. Rupprecht, D. Cremers, P. Vajda and J. Wang.
Cache Me if You Can: Accelerating Diffusion Models through Block Caching.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1010]
H. Wu, X. Zuo, S. Leutenegger, O. Litany, K. Schindler and S. Huang.
Dynamic LiDAR Re-simulation using Compositional Neural Fields.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
[1009]
Y. Xia, L. Shi, Z. Ding, J. F. Henriques and D. Cremers.
Text2Loc: 3D Point Cloud Localization from Natural Language.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint at arXiv.
arXiv.
GitHub.
[1008]
L. Yang, L. Hoyer, M. Weber, T. Fischer, D. Dai, L. Leal-Taixé, D. Cremers, M. Pollefeys and L. Van Gool.
MICDrop: Masking Image and Depth Features via Complementary Dropout for Domain-Adaptive Semantic Segmentation.
Workshop Synthetic Data for Computer Vision (SynData4CV 2024) at IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024). Seattle, WA, USA, Jun 17-21, 2024. To be published. Preprint available.
URL.
[1007]
H. Ye, Y. Liu, C. Ma and H. Schütze.
MoSECroT: Model Stitching with Static Word Embeddings for Crosslingual Zero-shot Transfer.
5th Workshop on Insights from Negative Results in NLP at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024). Mexico City, Mexico, Jun 16-21, 2024.
URL.
[1006]
P. Resnik, B. Ma, A. Hoyle, P. Goel, R. Sarkar, M. Gearing, A.-C. Haensch and F. Kreuter.
TOPCAT: Topic-Oriented Protocol for Content Analysis of Text – A Preliminary Study.
6th Workshop on Natural Language Processing and Computational Social Science (NLP+CSS 2024) at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024). Mexico City, Mexico, Jun 16-21, 2024.
URL.
[1005]
Z. Ding, H. Cai, J. Wu, Y. Ma, R. Liao, B. Xiong and V. Tresp.
zrLLM: Zero-Shot Relational Learning on Temporal Knowledge Graphs with Large Language Models.
Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024). Mexico City, Mexico, Jun 16-21, 2024.
URL.
[1004]
R. Liao, X. Jia, Y. Ma and V. Tresp.
GenTKG: Generative Forecasting on Temporal Knowledge Graph.
Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024). Mexico City, Mexico, Jun 16-21, 2024.
URL.
GitHub.
[1003]
S. Mayhew, T. Blevins, S. Liu, M. Šuppa, H. Gonen, J. M. Imperial, B. F. Karlsson, P. Lin, N. Ljubešić, L. J. Miranda, B. Plank, A. Riabi and Y. Pinter.
Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark.
Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024). Mexico City, Mexico, Jun 16-21, 2024.
URL.
[1002]
M. Wang, H. Adel, L. Lange, J. Strötgen and H. Schütze.
Rehearsal-Free Modular and Compositional Continual Learning for Language Models.
Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024). Mexico City, Mexico, Jun 16-21, 2024.
URL.
[1001]
Y. Liu, P. Lin, M. Wang and H. Schütze.
OFA: A Framework of Initializing Unseen Subword Embeddings for Efficient Large-scale Multilingual Continued Pretraining.
Findings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024). Mexico City, Mexico, Jun 16-21, 2024.
URL.
[1000]
J. W. Grootjen, H. Weingärtner and S. Mayer.
Investigating the Effects of Eye-Tracking Interpolation Methods on Model Performance of LSTM.
9th International Workshop on Pervasive Eye Tracking and Mobile Eye-Based Interaction (PETMEI 2024) at the ACM Symposium on Eye Tracking Research and Applications (ETRA 2024). Glasgow, Scotland, Jun 04-07, 2024.
DOI.
[999]
J. Simson, A. Fabris and C. Kern.
Lazy Data Practices Harm Fairness Research.
7th ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT 2024). Rio de Janeiro, Brazil, Jun 03-06, 2024.
DOI.
[998]
J. Simson, F. Pfisterer and C. Kern.
One Model Many Scores: Using Multiverse Analysis to Prevent Fairness Hacking and Evaluate the Influence of Model Design Decisions.
7th ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT 2024). Rio de Janeiro, Brazil, Jun 03-06, 2024.
DOI.
[997]
J. Guo, D. Hong, Z. Liu and X. Zhu.
Continent-wide urban tree canopy fine-scale mapping and coverage assessment in South America with high-resolution satellite images.
ISPRS Journal of Photogrammetry and Remote Sensing 212 (Jun. 2024).
DOI.
[996]
S. M. Fischer, J. Kiechle, D. M. Lang, J. C. Peeken and J. A. Schnabel.
Mask the Unknown: Assessing Different Strategies to Handle Weak Annotations in the MICCAI2023 Mediastinal Lymph Node Quantification Challenge.
Machine Learning for Biomedical Imaging 2 (Jun. 2024).
DOI.
GitHub.
[995]
D. Bär, F. Pierri, G. De Francisci Morales and S. Feuerriegel.
Systematic discrepancies in the delivery of political ads on facebook and instagram.
PNAS Nexus (Jun. 2024).
DOI.
[994]
P. Mondorf and B. Plank.
Liar, Liar, Logical Mire: A Benchmark for Suppositional Reasoning in Large Language Models.
Preprint at arXiv (Jun. 2024).
arXiv.
[993]
J. Ramjith, A. Bender, K. C. B. Roes and M. A. Jonker.
Recurrent events analysis with piece-wise exponential additive mixed models.
Statistical Modelling 24.3 (Jun. 2024).
DOI.
[992]
J. Kiechle, S. M. Fischer, D. M. Lang, M. Folco, S. C. Foreman, V. K. N. Rösner, A.-K. Lohse, C. Mogler, C. Knebel, M. R. Makowski, K. Woertler, S. E. Combs, H. R. Duerr, A. S. Gersing, J. C. Peeken and J. A. Schnabel.
Unifying local and global shape descriptors to grade soft-tissue sarcomas using graph convolutional networks.
IEEE 20th International Symposium on Biomedical Imaging (ISBI 2024). Athens, Greece, May 27-30, 2024.
DOI.
[991]
V. Blaschke, B. Kovačić, S. Peng, H. Schütze and B. Plank.
MaiBaam: A Multi-Dialectal Bavarian Universal Dependency Treebank.
Joint International Conference on Computational Linguistics, Language Resources and Evalutaion (LREC-COLING 2024). Torino, Italy, May 20-25, 2024.
URL.
[990]
A. H. Kargaran, F. Yvon and H. Schütze.
GlotScript: A Resource and Tool for Low Resource Writing System Identification.
Joint International Conference on Computational Linguistics, Language Resources and Evalutaion (LREC-COLING 2024). Torino, Italy, May 20-25, 2024.
URL.
GitHub.
[989]
A. Köksal, S. Severini and H. Schütze.
SilverAlign: MT-Based Silver Data Algorithm for Evaluating Word Alignment.
Joint International Conference on Computational Linguistics, Language Resources and Evalutaion (LREC-COLING 2024). Torino, Italy, May 20-25, 2024.
URL.
[988]
L. Weissweiler, N. Böbel, K. Guiller, S. Herrera, W. Scivetti, A. Lorenzi, N. Melnik, A. Bhatia, H. Schütze, L. Levin, A. Zeldes, J. Nivre, W. Croft and N. Schneider.
UCxn: Typologically Informed Annotation of Constructions Atop Universal Dependencies.
Joint International Conference on Computational Linguistics, Language Resources and Evalutaion (LREC-COLING 2024). Torino, Italy, May 20-25, 2024.
URL.
[987]
S. Zhou, L. Weissweiler, T. He, H. Schütze, D. R. Mortensen and L. Levin.
Constructions Are So Difficult That Even Large Language Models Get Them Right for the Wrong Reasons.
Joint International Conference on Computational Linguistics, Language Resources and Evalutaion (LREC-COLING 2024). Torino, Italy, May 20-25, 2024.
URL.
[986]
A. Beer, O. Palotás, A. Maldonado, A. Draganov and I. Assent.
DROPP: Structure-aware PCA for Ordered Data.
40th IEEE International Conference on Data Engineering (ICDE 2024). Utrecht, Netherlands, May 13-17, 2024. To be published.
DOI.
[985]
Y. Velikova, M. F. Azampour, W. Simson, M. Esposito and N. Navab.
Implicit Neural Representations for Breathing-compensated Volume Reconstruction in Robotic Ultrasound Aorta Screening.
IEEE International Conference on Robotics and Automation (ICR4 2024). Yokohoma, Japan, May 13-17, 2024. To be published. Preprint at arXiv.
arXiv.
[984]
J. W. Grootjen, H. Weingärtner and S. Mayer.
Uncovering and Addressing Blink-Related Challenges in Using Eye Tracking for Interactive Systems.
Conference on Human Factors in Computing Systems (CHI 2024). Honolulu, Hawaii, May 11-16, 2024.
DOI.
[983]
L. Haliburton, I. Damen, C. Lallemand, J. Niess, A. Ahtinen and P. W. Woźniak.
Office Wellbeing by Design: Don’t Stand for Anything Less.
Conference on Human Factors in Computing Systems (CHI 2024). Honolulu, Hawaii, May 11-16, 2024.
DOI.
[982]
L. Haliburton, D. J. Grüning, F. Riedel, A. Schmidt and N. Terzimehić.
A Longitudinal In-the-Wild Investigation of Design Frictions to Prevent Smartphone Overuse.
Conference on Human Factors in Computing Systems (CHI 2024). Honolulu, Hawaii, May 11-16, 2024.
DOI.
[981]
C. Kobiella, Y. S. F. López, F. Draxler and A. Schmidt.
''If the Machine Is As Good As Me, Then What Use Am I?'' -- How the Use of ChatGPT Changes Young Professionals' Perception of Productivity and Accomplishment.
Conference on Human Factors in Computing Systems (CHI 2024). Honolulu, Hawaii, May 11-16, 2024.
DOI.
[980]
S. Sakel, T. Blenk, A. Schmidt and L. Haliburton.
The Social Journal: Investigating Technology to Support and Reflect on Meaningful Social Interactions.
Conference on Human Factors in Computing Systems (CHI 2024). Honolulu, Hawaii, May 11-16, 2024.
DOI.
[979]
K. Ahn, X. Cheng, M. Song, C. Yun, A. Jadbabaie and S. Sra.
Linear attention is (maybe) all you need (to understand Transformer optimization).
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[978]
S. d'Ascoli, S. Becker, P. Schwaller, A. Mathis and N. Kilbertus.
ODEFormer: Symbolic Regression of Dynamical Systems with Transformers.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
GitHub.
[977]
L. Eyring, D. Klein, T. Uscidda, G. Palla, N. Kilbertus, Z. Akata and F. J. Theis.
Unbalancedness in Neural Monge Maps Improves Unpaired Domain Translation.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[976]
D. Frauen, F. Imrie, A. Curth, V. Melnychuk, S. Feuerriegel and M. van der Schaar.
A Neural Framework for Generalized Causal Sensitivity Analysis.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[975]
S. Gupta, S. Jegelka, D. Lopez-Paz and K. Ahuja.
Context is Environment.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
GitHub.
[974]
S. Gupta, J. Robinson, D. Lim, S. Villar and S. Jegelka.
Structuring Representation Geometry with Rotationally Equivariant Contrastive Learning.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
GitHub.
[973]
K. Hess, V. Melnychuk, D. Frauen and S. Feuerriegel.
Bayesian neural controlled differential equations for treatment effect estimation.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[972]
Y. Huang, W. Lu, J. Robinson, Y. Yang, M. Zhang, S. Jegelka and P. Li.
On the Stability of Expressive Positional Encodings for Graphs.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
GitHub.
[971]
B. Kiani, T. Le, H. Lawrence, S. Jegelka and M. Weber.
On the hardness of learning under symmetries.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[970]
C. Koke and D. Cremers.
HoloNets: Spectral Convolutions do extend to Directed Graphs.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[969]
T. Le, L. Ruiz and S. Jegelka.
A Poincaré Inequality and Consistency Results for Signal Sampling on Large Graphs.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[968]
M. Lienen, D. Lüdke, J. Hansen-Palmus and S. Günnemann.
From Zero to Turbulence: Generative Modeling for 3D Flow Simulation.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[967]
V. Melnychuk, D. Frauen and S. Feuerriegel.
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[966]
M. Schröder, D. Frauen and S. Feuerriegel.
Causal Fairness under Unobserved Confounding: A Neural Sensitivity Framework.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[965]
S. Solonets, D. Sinitsyn, L. Von Stumberg, N. Araslanov and D. Cremers.
An Analytical Solution to Gauss-Newton Loss for Direct Image Alignment.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[964]
A. Vahidi, S. Schoßer, L. Wimmer, Y. Li, B. Bischl, E. Hüllermeier and M. Rezaei.
Probabilistic Self-supervised Learning via Scoring Rules Minimization.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
GitHub.
[963]
R. Winchenbach and N. Thuerey.
Symmetric Basis Convolutions for Learning Lagrangian Fluid Mechanics.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
GitHub.
[962]
P. Schnell and N. Thuerey.
Stabilizing Backpropagation Through Time to Learn Complex Physics.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024. Preprint at arXiv.
URL.
GitHub.
[961]
L. Zellner, S. Rauch, J. Sontheim and T. Seidl.
On Diverse and Precise Recommendations for Small and Medium-Sized Enterprises.
28th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2024). Taipeh, Taiwan, May 07-10, 2024.
DOI.
GitHub.
[960]
R. Kohli, M. Feurer, B. Bischl, K. Eggensperger and F. Hutter.
Towards Quantifying the Effect of Datasets for Benchmarking: A Look at Tabular Machine Learning.
Workshop on Data-centric Machine Learning Research (DMLR 2024) at the 12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[959]
A. Palma, T. Richter, H. Zhang, A. Dittadi and F. J. Theis.
cellFlow: a generative flow-based model for single-cell count data.
Workshop on Machine Learning for Genomics Explorations (MLGenX 2024) at the 12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[958]
S. Chen, Z. Han, B. He, M. Buckley, P. Torr, V. Tresp and J. Gu.
Understanding and Improving In-Context Learning on Vision-language Models.
Workshop on Mathematical and Empirical Understanding of Foundation Models (ME-FoMo 2024) at the 12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[957]
S. Chen, Z. Han, B. He, Z. Ding, W. Yu, P. Torr, V. Tresp and J. Gu.
Red Teaming GPT-4V: Are GPT-4V Safe Against Uni/Multi-Modal Jailbreak Attacks?.
Workshop on Secure and Trustworthy Large Language Models (SeT LLM 2024) at the 12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria, May 07-11, 2024.
URL.
[956]
J. Kiechle, S. C. Foreman, S. Fischer, D. Rusche, V. K. N. Rösner, A.-K. Lohse, C. Mogler, C. Knebel, S. E. Combs, M. R. Makowski, K. Woertler, D. M. Lang, J. A. Schnabel, A. S. Gersing and J. C. Peeken.
Investigating the role of morphology in deep learning-based liposarcoma grading.
Annual Meeting of the European Society for Radiotherapy and Oncology (ESTRO 2024). Glasgow, UK, May 03-07, 2024.
URL.
[955]
V. Bengs, B. Haddenhorst and E. Hüllermeier.
Identifying Copeland Winners in Dueling Bandits with Indifferences.
27th International Conference on Artificial Intelligence and Statistics (AISTATS 2024). Valencia, Spain, May 02-04, 2024.
URL.
[954]
D. Dold, D. Rügamer, B. Sick and O. Dürr.
Bayesian Semi-structured Subspace Inference.
27th International Conference on Artificial Intelligence and Statistics (AISTATS 2024). Valencia, Spain, May 02-04, 2024.
URL.
[953]
J. P. Engelmann, A. Palma, J. M. Tomczak, F. J. Theis and F. P. Casale.
Mixed Models with Multiple Instance Learning.
27th International Conference on Artificial Intelligence and Statistics (AISTATS 2024). Valencia, Spain, May 02-04, 2024.
URL.
[952]
P. Kolpaczki, M. Muschalik, F. Fumagalli, B. Hammer and E. Hüllermeier.
SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification.
27th International Conference on Artificial Intelligence and Statistics (AISTATS 2024). Valencia, Spain, May 02-04, 2024.
URL.
[951]
N. Palm and T. Nagler.
An Online Bootstrap for Time Series.
27th International Conference on Artificial Intelligence and Statistics (AISTATS 2024). Valencia, Spain, May 02-04, 2024.
URL.
[950]
D. Rügamer.
Scalable Higher-Order Tensor Product Spline Models.
27th International Conference on Artificial Intelligence and Statistics (AISTATS 2024). Valencia, Spain, May 02-04, 2024.
URL.
[949]
K. Jeblick, B. Schachtner, J. Dexl, A. Mittermeier, A. T. Stüber, J. Topalis, T. Weber, P. Wesp, B. O. Sabel, J. Ricke and M. Ingrisch.
ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports.
European Radiology 34 (May. 2024).
DOI.
[948]
Y. Li, I. Yakushev, D. M. Hedderich and C. Wachinger.
PASTA: Pathology-Aware MRI to PET Cross-Modal Translation with Diffusion Models.
Preprint at arXiv (May. 2024).
arXiv.
GitHub.
[947]
Y. Liu, C. Ma, H. Ye and H. Schütze.
TransMI: A Framework to Create Strong Baselines from Multilingual Pretrained Language Models for Transliterated Data.
Preprint at arXiv (May. 2024).
arXiv.
GitHub.
[946]
A. Scagliotti.
Minimax problems for ensembles of affine-control systems.
Preprint at arXiv (May. 2024).
arXiv.
[945]
A. F. Thielmann, A. Reuter, T. Kneib, D. Rügamer and B. Säfken.
Interpretable Additive Tabular Transformer Networks.
Transactions on Machine Learning Research (May. 2024).
URL.
[944]
N. Strauß and M. Schubert.
Spatial-Aware Deep Reinforcement Learning for the Traveling Officer Problem.
SIAM International Conference on Data Mining (SDM 2024). Houston, TX, USA, Apr 18-20, 2024.
DOI.
[943]
M. Herrmann, D. Kazempour, F. Scheipl and P. Kröger.
Enhancing cluster analysis via topological manifold learning.
Data Mining and Knowledge Discovery 38 (Apr. 2024).
DOI.
[942]
C. Koller, P. Jung and X. Zhu.
Can Land Cover Classification Models Benefit From Distance-Aware Architectures?.
IEEE Geoscience and Remote Sensing Magazine 21 (Apr. 2024).
DOI.
GitHub.
[941]
X. Li, C. Wen, Y. Hu, Z. Yuan and X. Zhu.
Vision-Language Models in Remote Sensing: Current progress and future trends.
IEEE Geoscience and Remote Sensing Magazine 62 (Apr. 2024).
DOI.
[940]
K. Qian, Y. Wang, P. Jung, Y. Shi and X. Zhu.
HyperLISTA-ABT: An Ultralight Unfolded Network for Accurate Multicomponent Differential Tomographic SAR Inversion.
IEEE Transactions on Geoscience and Remote Sensing 62 (Apr. 2024).
DOI.
[939]
Y. Lee, H. Boche and G. Kutyniok.
Computability of Optimizers.
IEEE Transactions on Information Theory 70.4 (Apr. 2024).
DOI.
[938]
J. Guo, D. Hong and X. Zhu.
High-resolution satellite images reveal the prevalent positive indirect impact of urbanization on urban tree canopy coverage in South America.
Landscape and Urban Planning 247 (Apr. 2024).
DOI.
[937]
A. Modarressi, A. Köksal, A. Imani, M. Fayyaz and H. Schütze.
MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory.
Preprint at arXiv (Apr. 2024).
arXiv.
[936]
T. Weber, J. Dexl, D. Rügamer and M. Ingrisch.
Post-Training Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition.
Preprint at arXiv (Apr. 2024).
arXiv.
[935]
A. C. Schaar, A. Tejada-Lapuerta, G. Palla, R. Gutgesell, L. Halle, M. Minaeva, L. Vornholz, L. Dony, F. Drummer, M. Bahrami and F. J. Theis.
Nicheformer: a foundation model for single-cell and spatial omics.
Preprint at bioRxiv (Apr. 2024).
DOI.
[934]
A. Maronikolakis, A. Köksal and H. Schütze.
Sociocultural knowledge is needed for selection of shots in hate speech detection tasks.
4th Workshop on Language Technology for Equality, Diversity, Inclusion (LT-EDI 2024). St. Julian's, Malta, Mar 21, 2024.
URL.
[933]
A. Hayler, F. Wimbauer, D. Muhle, C. Rupprecht and D. Cremers.
S4C: Self-Supervised Semantic Scene Completion with Neural Fields.
11th International Conference on 3D Vision (3DV 2024). Davos, Switzerland, Mar 18-21, 2024.
DOI.
[932]
E. Artemova, V. Blaschke and B. Plank.
Exploring the Robustness of Task-oriented Dialogue Systems for Colloquial German Varieties.
18th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2024). St. Julians, Malta, Mar 17-22, 2024.
URL.
[931]
J. Beck, S. Eckman, B. Ma, R. Chew and F. Kreuter.
Order Effects in Annotation Tasks: Further Evidence of Annotation Sensitivity.
18th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2024). St. Julians, Malta, Mar 17-22, 2024.
URL.
[930]
V. T. Hu, D. Wu, Y. M. Asano, P. Mettes, B. Fernando, B. Ommer and C. G. M. Snoek.
Flow Matching for Conditional Text Generation in a Few Sampling Steps.
18th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2024). St. Julians, Malta, Mar 17-22, 2024.
URL.
[929]
P. Lin, C. Hu, Z. Zhang, A. F. T. Martins and H. Schütze.
mPLM-Sim: Better Cross-Lingual Similarity and Transfer in Multilingual Pretrained Language Models.
18th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2024). St. Julians, Malta, Mar 17-22, 2024.
URL.
[928]
B. Ma, E. Nie, S. Yuan, H. Schmid, M. Färber, F. Kreuter and H. Schütze.
ToPro: Token-Level Prompt Decomposition for Cross-Lingual Sequence Labeling Tasks.
18th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2024). St. Julians, Malta, Mar 17-22, 2024.
URL.
[927]
L. K. Şenel, B. Ebing, K. Baghirova, H. Schütze and G. Glavaš.
Kardeş-NLU: Transfer to Low-Resource Languages with Big Brother’s Help – A Benchmark and Evaluation for Turkic Languages.
18th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2024). St. Julians, Malta, Mar 17-22, 2024.
URL.
[926]
M. Zhang, R. van der Goot, M.-Y. Kan and B. Plank.
NNOSE: Nearest Neighbor Occupational Skill Extraction.
18th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2024). St. Julians, Malta, Mar 17-22, 2024.
URL.
[925]
M. Zhang, R. van der Goot and B. Plank.
Entity Linking in the Job Market Domain.
18th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2024). St. Julians, Malta, Mar 17-22, 2024.
URL.
[924]
F. Coens, N. Knops, I. Tieken, S. Vogelaar, A. Bender, J. J. Kim, K. Krupka, L. Pape, A. Raes, B. Tönshoff, A. Prytula and C. Registry.
Time-Varying Determinants of Graft Failure in Pediatric Kidney Transplantation in Europe.
Clinical Journal of the American Society of Nephrology 19.3 (Mar. 2024).
DOI.
[923]
W. H. Hartl, P. Kopper, L. Xu, L. Heller, M. Mironov, R. Wang, A. G. Day, G. Elke, H. Küchenhoff and A. Bender.
Relevance of Protein Intake for Weaning in the Mechanically Ventilated Critically Ill: Analysis of a Large International Database.
Critical Care Medicine 50.3 (Mar. 2024).
DOI.
[922]
Q. Li, L. Mou, Y. Sun, Y. Hua, Y. Shi and X. Zhu.
A Review of Building Extraction From Remote Sensing Imagery: Geometrical Structures and Semantic Attributes.
IEEE Transactions on Geoscience and Remote Sensing 62 (Mar. 2024).
DOI.
[921]
Z. Yuan, L. Mou, Y. Hua and X. Zhu.
RRSIS: Referring Remote Sensing Image Segmentation.
IEEE Transactions on Geoscience and Remote Sensing 62 (Mar. 2024).
DOI.
GitHub.
[920]
S. Doda, M. Kahl, K. Ouan, I. Obadic, Y. Wang, H. Taubenböck and X. Zhu.
Interpretable deep learning for consistent large-scale urban population estimation using Earth observation data.
International Journal of Applied Earth Observation and Geoinformation 128 (Mar. 2024).
DOI.
[919]
R. Bailo, A. Barbaro, S. N. Gomes, K. Riedl, T. Roith, C. Totzeck and U. Vaes.
CBX: Python and Julia packages for consensus-based interacting particle methods.
Preprint at arXiv (Mar. 2024).
arXiv.
[918]
P. Kopper, D. Rügamer, R. Sonabend, B. Bischl and A. Bender.
Training Survival Models using Scoring Rules.
Preprint at arXiv (Mar. 2024).
arXiv.
[917]
N. Stolt-Ansó, V. Sideri-Lampretsa, M. Dannecker and D. Rückert.
Intensity-based 3D motion correction for cardiac MR images.
Preprint at arXiv (Mar. 2024).
arXiv.
[916]
H. Chen, Y. Zhang, D. Krompass, J. Gu and V. Tresp.
FedDAT: An Approach for Foundation Model Finetuning in Multi-Modal Heterogeneous Federated Learning.
38th Conference on Artificial Intelligence (AAAI 2024). Vancouver, Canada, Feb 20-27, 2024.
DOI.
[915]
P. Kolpaczki, V. Bengs, M. Muschalik and E. Hüllermeier.
Approximating the Shapley Value without Marginal Contributions.
38th Conference on Artificial Intelligence (AAAI 2024). Vancouver, Canada, Feb 20-27, 2024.
DOI.
[914]
T. Ladner and M. Althoff.
Exponent Relaxation of Polynomial Zonotopes and Its Applications in Formal Neural Network Verification.
38th Conference on Artificial Intelligence (AAAI 2024). Vancouver, Canada, Feb 20-27, 2024.
DOI.
[913]
J. Lienen and E. Hüllermeier.
Mitigating Label Noise through Data Ambiguation.
38th Conference on Artificial Intelligence (AAAI 2024). Vancouver, Canada, Feb 20-27, 2024.
DOI.
[912]
M. Muschalik, F. Fumagalli, B. Hammer and E. Hüllermeier.
Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles.
38th Conference on Artificial Intelligence (AAAI 2024). Vancouver, Canada, Feb 20-27, 2024.
DOI.
[911]
T. N. Wolf, F. Bongratz, A.-M. Rickmann, S. Pölsterl and C. Wachinger.
Keep the Faith: Faithful Explanations in Convolutional Neural Networks for Case-Based Reasoning.
38th Conference on Artificial Intelligence (AAAI 2024). Vancouver, Canada, Feb 20-27, 2024.
DOI.
[910]
A. Reithmeir, J. A. Schnabel and V. A. Zimmer.
Learning physics-inspired regularization for medical image registration with hypernetworks.
SPIE Medical Imaging: Image Processing 2024. San Diego, CA, USA, Feb 18-22, 2024.
DOI.
[909]
H. Weerts, F. Pfisterer, M. Feurer, K. Eggensperger, E. Bergman, N. Awad, J. Vanschoren, M. Pechenizkiy, B. Bischl and F. Hutter.
Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML.
Journal of Artificial Intelligence Research 79 (Feb 17, 2024).
DOI.
[908]
R. van Koningsbruggen, L. Haliburton, B. Rossmy, C. George, E. Hornecker and B. Hengeveld.
Metaphors and `Tacit' Data: the Role of Metaphors in Data and Physical Data Representations.
18th International Conference on Tangible, Embedded, and Embodied Interaction. Cork, Ireland, Feb 11-14, 2024.
DOI.
[907]
S. Wiegrebe, P. Kopper, R. Sonabend, B. Bischl and A. Bender.
Deep learning for survival analysis: a review.
Artificial Intelligence Review 57.65 (Feb. 2024).
DOI.
[906]
S. Feuerriegel, J. Hartmann, C. Janiesch and P. Zschech.
Generative AI.
Business and Information Systems Engineering 66.1 (Feb. 2024).
DOI.
[905]
T. Li, K. Heidler, L. Mou, Á. Ignéczi, X. Zhu and J. L. Bamber.
A high-resolution calving front data product for marine-terminating glaciers in Svalbard.
Earth System Science Data 16.2 (Feb. 2024).
DOI.
[904]
C. Cipriani, M. Fornasier and A. Scagliotti.
From NeurODEs to AutoencODEs: a mean-field control framework for width-varying Neural Networks.
European Journal of Applied Mathematics (Feb. 2024).
DOI.
[903]
Y. Xie, X. Yuan, X. Zhu and J. Tian.
Multimodal Co-Learning for Building Change Detection: A Domain Adaptation Framework Using VHR Images and Digital Surface Models.
IEEE Transactions on Geoscience and Remote Sensing 62 (Feb. 2024).
DOI.
[902]
P. Gijsbers, M. L. P. Bueno, S. Coors, E. LeDell, S. Poirier, J. Thomas, B. Bischl and J. Vanschoren.
AMLB: an AutoML Benchmark.
Journal of Machine Learning Research 25.101 (Feb. 2024).
URL.
[901]
A. Bonfanti, G. Bruno and C. Cipriani.
The Challenges of the Nonlinear Regime for Physics-Informed Neural Networks.
Preprint at arXiv (Feb. 2024).
arXiv.
[900]
A. Höhl, I. Obadic, M. Á. F. Torres, H. Najjar, D. Oliveira, Z. Akata, A. Dengel and X. Zhu.
Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing.
Preprint at arXiv (Feb. 2024).
arXiv.
[899]
C. Liu, C. Albrecht, Y. Wang and X. Zhu.
Task Specific Pretraining with Noisy Labels for Remote sensing Image Segmentation.
Preprint at arXiv (Feb. 2024).
arXiv.
[898]
T. Richter, M. Bahrami, Y. Xia, D. S. Fischer and F. J. Theis.
Delineating the Effective Use of Self-Supervised Learning in Single-Cell Genomics.
Preprint at bioRxiv (Feb. 2024).
DOI.
[897]
D. Schalk, B. Bischl and D. Rügamer.
Privacy-Preserving and Lossless Distributed Estimation of High-Dimensional Generalized Additive Mixed Models.
Statistics and Computing 34.31 (Feb. 2024).
DOI.
[896]
D. Racek, B. I. Davidson, P. W. Thurner, X. Zhu and G. Kauermann.
The Russian war in Ukraine increased Ukrainian language use on social media.
Communications Psychology 2.1 (Jan 10, 2024).
DOI.
[895]
C. Geldhauser and H. Diebel-Fischer.
Is diverse and inclusive AI trapped in the gap between reality and algorithmizability?.
Northern Lights Deep Learning Conference (NLDL 2024). Tromsø, Norway, Jan 09-11, 2024.
URL.
[894]
M. Bernhard, R. Amoroso, Y. Kindermann, M. Schubert, L. Baraldi, R. Cucchiara and V. Tresp.
What’s Outside the Intersection? Fine-grained Error Analysis for Semantic Segmentation Beyond IoU.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024). Waikoloa, Hawaii, Jan 04-08, 2024.
DOI.
GitHub.
[893]
A. R. Bhattarai, M. Nießner and A. Sevastopolsky.
TriPlaneNet: An Encoder for EG3D Inversion.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024). Waikoloa, Hawaii, Jan 04-08, 2024.
DOI.
[892]
M. Brahimi, B. Haefner, T. Yenamandra, B. Goldluecke and D. Cremers.
SupeRVol: Super-Resolution Shape and Reflectance Estimation in Inverse Volume Rendering.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024). Waikoloa, Hawaii, Jan 04-08, 2024.
DOI.
[891]
M. Z. Darestani, V. Nath, W. Li, Y. He, H. R. Roth, Z. Xu, D. Xu, R. Heckel and C. Zhao.
IR-FRestormer: Iterative Refinement With Fourier-Based Restormer for Accelerated MRI Reconstruction.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024). Waikoloa, Hawaii, Jan 04-08, 2024.
DOI.
[890]
S. Klenk, D. Bonello, L. Koestler, N. Araslanov and D. Cremers.
Masked Event Modeling: Self-Supervised Pretraining for Event Cameras.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024). Waikoloa, Hawaii, Jan 04-08, 2024.
DOI.
[889]
U. Sahin, H. Li, Q. Khan, D. Cremers and V. Tresp.
Enhancing Multimodal Compositional Reasoning of Visual Language Models With Generative Negative Mining.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024). Waikoloa, Hawaii, Jan 04-08, 2024.
DOI.
GitHub.
[888]
T. Weber, M. Ingrisch, B. Bischl and D. Rügamer.
Constrained Probabilistic Mask Learning for Task-specific Undersampled MRI Reconstruction.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024). Waikoloa, Hawaii, Jan 04-08, 2024.
DOI.
[887]
T. Yenamandra, A. Tewari, N. Yang, F. Bernard, C. Theobalt and D. Cremers.
FIRe: Fast Inverse Rendering Using Directional and Signed Distance Functions.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024). Waikoloa, Hawaii, Jan 04-08, 2024.
DOI.
[886]
G. Zhang, Y. Zhang, K. Zhang and V. Tresp.
Can Vision-Language Models be a Good Guesser? Exploring VLMs for Times and Location Reasoning.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024). Waikoloa, Hawaii, Jan 04-08, 2024.
DOI.
[885]
E. Hüllermeier and R. Slowinski.
Preference learning and multiple criteria decision aiding: Differences, commonalities, and synergies -- Part I.
4OR (Jan. 2024).
DOI.
[884]
E. Hüllermeier and R. Slowinski.
Preference learning and multiple criteria decision aiding: Differences, commonalities, and synergies -- Part II.
4OR (Jan. 2024).
DOI.
[883]
L. Bothmann and K. Peters.
Fairness als Qualitätskriterium im Maschinellen Lernen – Rekonstruktion des philosophischen Konzepts und Implikationen für die Nutzung außergesetzlicher Merkmale bei qualifizierten Mietspiegeln.
AStA Wirtschafts- und Sozialstatistisches Archiv (2024). To be published.
[882]
J. Gertheiss, D. Rügamer, B. Liew and S. Greven.
Functional Data Analysis: An Introduction and Recent Developments.
Biometrical Journal (2024). To be published. Preprint at arXiv.
arXiv.
GitHub.
[881]
B. Bischl, R. Sonabend, L. Kotthoff and M. Lang.
Applied Machine Learning Using mlr3 in R.
CRC Press (Jan. 2024).
DOI.
[880]
T. Yang, J. Maly, S. Dirksen and G. Caire.
Plug-In Channel Estimation With Dithered Quantized Signals in Spatially Non-Stationary Massive MIMO Systems.
IEEE Transactions on Communications 72.1 (Jan. 2024).
DOI.
[879]
F. Xu, Y. Shi, P. Ebel, W. Yang and X. Zhu.
Multimodal and Multiresolution Data Fusion for High-Resolution Cloud Removal: A Novel Baseline and Benchmark.
IEEE Transactions on Geoscience and Remote Sensing 62 (Jan. 2024).
DOI.
GitHub.
[878]
F. Zhang, Y. Shi, Z. Xiong and X. Zhu.
Few-Shot Object Detection in Remote Sensing: Lifting the Curse of Incompletely Annotated Novel Objects.
IEEE Transactions on Geoscience and Remote Sensing 62 (Jan. 2024).
DOI.
GitHub.
[877]
L. Kreitner, J. C. Paetzold, N. Rauch, C. Chen, A. M. Hagag, A. E. Fayed, S. Sivaprasad, S. Rausch, J. Weichsel, B. H. Menze, M. Harders, B. Knier, D. Rückert and M. J. Menten.
Synthetic optical coherence tomography angiographs for detailed retinal vessel segmentation without human annotations.
IEEE Transactions on Medical Imaging (Jan. 2024).
DOI.
[876]
P. Wesp, B. M. Schachtner, K. Jeblick, J. Topalis, M. Weber, F. Fischer, R. Penning, J. Ricke, M. Ingrisch and B. O. Sabel.
Radiological age assessment based on clavicle ossification in CT: enhanced accuracy through deep learning.
International Journal of Legal Medicine (Jan. 2024).
DOI.
[875]
L. Kook, P. F. M. Baumann, O. Dürr, B. Sick and D. Rügamer.
Estimating Conditional Distributions with Neural Networks using R package deeptrafo.
Journal of Statistical Software (2024). To be published. Preprint at arXiv.
arXiv.
[874]
K. Hechinger, X. Zhu and G. Kauermann.
Categorising the world into local climate zones: towards quantifying labelling uncertainty for machine learning models.
Journal of the Royal Statistical Society. Series C (Applied Statistics) 73.1 (Jan. 2024).
DOI.
[873]
F. Bongratz, A.-M. Rickmann and C. Wachinger.
Neural deformation fields for template-based reconstruction of cortical surfaces from MRI.
Medical Image Analysis 93 (Jan. 2024).
DOI.
[872]
V. Lehmann, T. Zueger, M. Maritsch, M. Notter, S. Schallmoser, C. Bérubé, C. Albrecht, M. Kraus, S. Feuerriegel, E. Fleisch, T. Kowatsch, S. Lagger, M. Laimer, F. Wortmann and C. Stettler.
Machine Learning to Infer a Health State Using Biomedical Signals - Detection of Hypoglycemia in People with Diabetes while Driving Real Cars.
NEJM AI (Jan. 2024).
DOI.
[871]
D. Zhu, Q. Khan and D. Cremers.
Multi-vehicle trajectory prediction and control at intersections using state and intention information.
Neurocomputing 574 (Jan. 2024).
DOI.
GitHub.
[870]
M. Mandl, S. Hoffmann, S. Bieringer, A. E. Jacob, M. Kraft, S. Lemster and A.-L. Boulesteix.
Raising awareness of uncertain choices in empirical data analysis: A teaching concept towards replicable research practices.
PLOS Computational Biology 20.3 (2024).
DOI.
[869]
H. Boch, A. Fono and G. Kutyniok.
Mathematical Algorithm Design for Deep Learning under Societal and Judicial Constraints: The Algorithmic Transparency Requirement.
Preprint at arXiv (Jan. 2024).
arXiv.
[868]
M. M. Mandl, A. S. Becker-Pennrich, L. C. Hinske, S. Hoffmann and A.-L. Boulesteix.
Addressing researcher degrees of freedom through minP adjustment.
Preprint at arXiv (Jan. 2024).
arXiv.
[867]
Z. S. Dunias, B. Van Calster, D. Timmerman, A.-L. Boulesteix and M. van Smeden.
A comparison of hyperparameter tuning procedures for clinical prediction models: A simulation study.
Statistics in Medicine (Jan. 2024).
DOI.
[866]
M. Wünsch, C. Sauer, P. Callahan, L. C. Hinske and A.-L. Boulesteix.
From RNA sequencing measurements to the final results: a practical guide to navigating the choices and uncertainties of gene set analysis.
Wiley Interdisciplinary Reviews: Computational Statistics 16.1 (Jan. 2024).
DOI.
2023
[865]
H. A. Gündüz, S. Giri, M. Binder, B. Bischl and M. Rezaei.
Uncertainty Quantification of Deep Learning Models for Predicting the Regulatory Activity of DNA Sequences.
22nd IEEE International Conference on Machine Learning and Applications (ICMLA 2023). Jacksonville, Florida, USA, Dec 15-17, 2023.
DOI.
[864]
M. Zahn von, O. Hinz and S. Feuerriegel.
Locating disparities in machine learning.
IEEE International Conference on Big Data (IEEE BigData 2023). Sorrento, Italy, Dec 15-18, 2023.
DOI.
[863]
M. Singh, A. Fono and G. Kutyniok.
Expressivity of Spiking Neural Networks through the Spike Response Model.
1st Workshop on Unifying Representations in Neural Models (UniReps 2023) at the 37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[862]
S. Chen, J. Gu, Z. Han, Y. Ma, P. Torr and V. Tresp.
Benchmarking Robustness of Adaptation Methods on Pre-trained Vision-Language Models.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
GitHub.
[861]
D. Frauen, V. Melnychuk and S. Feuerriegel.
Sharp Bounds for Generalized Causal Sensitivity Analysis.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[860]
F. Fumagalli, M. Muschalik, P. Kolpaczki, E. Hüllermeier and B. Hammer.
SHAP-IQ: Unified Approximation of any-order Shapley Interactions.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[859]
M. Ghahremani Boozandani and C. Wachinger.
RegBN: Batch Normalization of Multimodal Data with Regularization.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
GitHub.
[858]
L. Gosch, S. Geisler, D. Sturm, B. Charpentier, D. Zügner and S. Günnemann.
Adversarial Training for Graph Neural Networks: Pitfalls, Solutions, and New Directions.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[857]
T. Klug, D. Atik and R. Heckel.
Analyzing the Sample Complexity of Self-Supervised Image Reconstruction Methods.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[856]
A. Krainovic, M. Soltanolkotabi and R. Heckel.
Learning Provably Robust Estimators for Inverse Problems via Jittering.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[855]
S. Maskey, R. Paolino, A. Bacho and G. Kutyniok.
A Fractional Graph Laplacian Approach to Oversmoothing.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
GitHub.
[854]
V. Melnychuk, D. Frauen and S. Feuerriegel.
Partial Counterfactual Identification of Continuous Outcomes with a Curvature Sensitivity Model.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[853]
S. Scepanovic, I. Obadic, S. Joglekar, L. GIUSTARINI, C. Nattero, D. Quercia and X. Zhu.
MedSat: A Public Health Dataset for England Featuring Medical Prescriptions and Satellite Imagery.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[852]
Y. Scholten, J. Schuchardt, A. Bojchevski and S. Stephan.
Hierarchical randomized smoothing.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[851]
J. Schuchardt, Y. Scholten and S. Günnemann.
Provable Adversarial Robustness for Group Equivariant Tasks: Graphs, Point Clouds, Molecules, and More.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[850]
J. Schweisthal, D. Frauen, V. Melnychuk and S. Feuerriegel.
Reliable Off-Policy Learning for Dosage Combinations.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[849]
N. Sturma, C. Squires, M. Drton and C. Uhler.
Unpaired Multi-Domain Causal Representation Learning.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[848]
G. Zhai, E. P. Örnek, S.-C. Wu, Y. Di, F. Tombari, N. Navab and B. Busam.
CommonScenes: Generating Commonsense 3D Indoor Scenes with Scene Graphs.
37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[847]
S. Zhang, P. Wicke, L. K. Senel, L. Figueredo, A. Naceri, S. Haddadin, B. Plank and H. Schütze.
LoHoRavens: A Long-Horizon Language-Conditioned Benchmark for Robotic Tabletop Manipulation.
6th Robot Learning Workshop: Pretraining, Fine-Tuning, and Generalization with Large Scale Models at the 37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[846]
A. Palma, S. Rybakov, L. Hetzel and F. J. Theis.
Modelling single-cell RNA-seq trajectories on a flat statistical manifold.
AI for Science Workshop at the 37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[845]
T. Richter, A. Schaar, F. Drummer, C.-W. Liao, L. Endres and F. J. Theis.
SpatialSSL: Whole-Brain Spatial Transcriptomics in the Mouse Brain with Self-Supervised Learning.
AI for Science Workshop at the 37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[844]
X. Li, E. Nie and S. Liang.
From Classification to Generation: Insights into Crosslingual Retrieval Augmented ICL.
Workshop Instruction Tuning and Instruction Following at the 37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[843]
C. Koke and D. Cremers.
HoloNets: Spectral Convolutions do extend to Directed Graphs.
Workshop New Frontiers in Graph Learning (GLFrontiers 2023) at the 37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[842]
C. Koke, A. Saroha, Y. Shen, M. Eisenberger and D. Cremers.
ResolvNet: A Graph Convolutional Network with multi-scale Consistency.
Workshop New Frontiers in Graph Learning (GLFrontiers 2023) at the 37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[841]
R. Liao, X. Jia, Y. Ma and V. Tresp.
GenTKG: Generative Forecasting on Temporal Knowledge Graph.
Workshop New Frontiers in Graph Learning (GLFrontiers 2023) at the 37th Conference on Neural Information Processing Systems (NeurIPS 2023). New Orleans, LA, USA, Dec 10-16, 2023.
URL.
[840]
M. F. Azampour, Y. Velikova, E. Fatemizadeh, S. P. Dakua and N. Navab.
Self-supervised Probe Pose Regression via Optimized Ultrasound Representations for US-CT Fusion.
International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2023). Vienna, Austria, Dec 09-10, 2023.
DOI.
[839]
X. Li, E. Nie and S. Liang.
Crosslingual Retrieval Augmented In-context Learning for Bangla.
1st Workshop on Bangla Language Processing (BLP-2023). Singapore, Dec 07, 2023.
DOI.
[838]
Z. Zhang, H. Yang, B. Ma, D. Rügamer and E. Nie.
Baby's CoThought: Leveraging Large Language Models for Enhanced Reasoning in Compact Models.
BabyLM Challenge at 27th Conference on Computational Natural Language Learning (CoNLL 2023). Singapore, Dec 06-10, 2023.
DOI.
GitHub.
[837]
M. Di Marco, K. Hämmerl and A. Fraser.
A Study on Accessing Linguistic Information in Pre-Trained Language Models by Using Prompts.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
[836]
E. Garces Arias, V. Pai, M. Schöffel, C. Heumann and M. Aßenmacher.
Automatic transcription of handwritten Old Occitan language.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
[835]
M. Giulianelli, J. Baan, W. Aziz, R. Fernández and B. Plank.
What Comes Next? Evaluating Uncertainty in Neural Text Generators Against Human Production Variability.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
[834]
V. Hangya, S. Severini, R. Ralev, A. Fraser and H. Schütze.
Multilingual Word Embeddings for Low-Resource Languages using Anchors and a Chain of Related Languages.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
[833]
R. Litschko, M. Müller-Eberstein, R. van der Goot, L. Weber-Genzel and B. Plank.
Establishing Trustworthiness: Rethinking Tasks and Model Evaluation.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
[832]
X. Wang and B. Plank.
ACTOR: Active Learning with Annotator-specific Classification Heads to Embrace Human Label Variation.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
[831]
L. Weissweiler, V. Hofmann, A. Kantharuban, A. Cai, R. Dutt, A. Hengle, A. Kabra, A. Kulkarni, A. Vijayakumar, H. Yu, H. Schütze, K. Oflazer and D. Mortensen.
Counting the Bugs in ChatGPT's Wugs: A Multilingual Investigation into the Morphological Capabilities of a Large Language Model.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
[830]
S. Xu, S. T.y.s.s, O. Ichim, I. Risini, B. Plank and M. Grabmair.
From Dissonance to Insights: Dissecting Disagreements in Rationale Construction for Case Outcome Classification.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
[829]
A. H. Kargaran, A. Imani, F. Yvon and H. Schütze.
GlotLID: Language Identification for Low-Resource Languages.
Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
GitHub.
[828]
C. Kern, S. Eckman, J. Beck, R. Chew, B. Ma and F. Kreuter.
Annotation Sensitivity: Training Data Collection Methods Affect Model Performance.
Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
[827]
A. Köksal, T. Schick and H. Schütze.
MEAL: Stable and Active Learning for Few-Shot Prompting.
Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
GitHub.
[826]
A. Köksal, O. Yalcin, A. Akbiyik, M. Kilavuz, A. Korhonen and H. Schütze.
Language-Agnostic Bias Detection in Language Models with Bias Probing.
Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
GitHub.
[825]
W. Lai, A. Chronopoulou and A. Fraser.
Mitigating Data Imbalance and Representation Degeneration in Multilingual Machine Translation.
Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
[824]
Y. Liu, H. Ye, L. Weissweiler and H. Schütze.
Crosslingual Transfer Learning for Low-Resource Languages Based on Multilingual Colexification Graphs.
Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
[823]
M. Müller-Eberstein, R. van der Goot, B. Plank and I. Titov.
Subspace Chronicles: How Linguistic Information Emerges, Shifts and Interacts during Language Model Training.
Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
[822]
E. Nie, H. Schmid and H. Schütze.
Unleashing the Multilingual Encoder Potential: Boosting Zero-Shot Performance via Probability Calibration.
Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2023). Singapore, Dec 06-10, 2023.
DOI.
[821]
L. Haliburton, B. Rossmy, A. Schmidt and C. George.
An Exploration of Hidden Data: Identifying and Physicalizing Personal Virtual Data to Extend Co-located Communication.
22nd International Conference on Mobile and Ubiquitous Multimedia (MUM 2023). Vienna, Austria, Dec 03-06, 2023.
DOI.
[820]
J. Rausch, G. Rashiti, M. Gusev, C. Zhang and S. Feuerriegel.
DSG: An End-to-End Document Structure Generator.
23rd IEEE International Conference on Data Mining (ICDM 2023). Shanghai, China, Dec 01-04, 2023.
DOI.
[819]
F. Karl, T. Pielok, J. Moosbauer, F. Pfisterer, S. Coors, M. Binder, L. Schneider, J. Thomas, J. Richter, M. Lang, E. C. Garrido-Merchán, J. Branke and B. Bischl.
Multi-Objective Hyperparameter Optimization in Machine Learning—An Overview.
ACM Transactions on Evolutionary Learning and Optimization 3.4 (Dec. 2023).
DOI.
[818]
O. Trinkaus and G. Kauermann.
Can machine learning algorithms deliver superior models for rental guides?.
Advances in Statistical Analysis 17 (Dec. 2023).
DOI.
[817]
M. Maritsch, S. Föll, V. Lehmann, N. Styger, C. Bérubé, M. Kraus, S. Feuerriegel, T. Kowatsch, T. Züger, E. Fleischr, F. Wortmann and C. Stettler.
Smartwatches for non-invasive hypoglycaemia detection during cognitive and psychomotor stress.
Diabetes, Obesity and Metabolism (Dec. 2023).
DOI.
[816]
D. Geissler, D. Bär, N. Pröllochs and S. Feuerriegel.
Russian propaganda on social media during the 2022 invasion of Ukraine.
EPJ Data Science (Dec. 2023).
DOI.
[815]
C. Leiber, L. Miklautz, C. Plant and C. Böhm.
Benchmarking Deep Clustering Algorithms With ClustPy.
IEEE International Conference on Data Mining Workshops (ICDMW 2023). Shanghai, China, Dec 01-04, 2023.
DOI.
GitHub.
[814]
C. Koller, G. Kauermann and X. Zhu.
Going Beyond One-Hot Encoding in Classification: Can Human Uncertainty Improve Model Performance in Earth Observation?.
IEEE Transactions on Geoscience and Remote Sensing 62 (Dec. 2023).
DOI.
[813]
H. Boche, A. Fono and G. Kutyniok.
Limitations of Deep Learning for Inverse Problems on Digital Hardware.
IEEE Transactions on Information Theory 69.12 (Dec. 2023).
DOI.
[812]
Ç. Yapar, R. Levie, G. Kutyniok and G. Caire.
Real-Time Outdoor Localization Using Radio Maps: A Deep Learning Approach.
IEEE Transactions on Wireless Communications 22.12 (Dec. 2023).
DOI.
[811]
A. T. Stüber, S. Coors, B. Schachtner, T. Weber, D. Rügamer, A. Bender, A. Mittermeier, O. Öcal, M. Seidensticker, J. Ricke, B. Bischl and M. Ingrisch.
A comprehensive machine learning benchmark study for radiomics-based survival analysis of CT imaging data in patients with hepatic metastases of CRC.
Investigative Radiology 58.12 (Dec. 2023).
DOI.
[810]
D. Strieder and M. Drton.
Confidence in causal inference under structure uncertainty in linear causal models with equal variances.
Journal of Causal Inference 11.1 (Dec. 2023).
DOI.
[809]
M. Fornasier, G. Savaré and G. E. Sodini.
Density of subalgebras of Lipschitz functions in metric Sobolev spaces and applications to Wasserstein Sobolev spaces.
Journal of Functional Analysis 285.11 (Dec. 2023).
DOI.
[808]
F. Brechtmann, T. Bechtler, S. Londhe, C. Mertes and J. Gagneur.
Evaluation of input data modality choices on functional gene embeddings.
NAR Genomics and Bioinformatics 5.4 (Dec. 2023).
DOI.
[807]
S. Klenk, M. Motzet, L. Koestler and D. Cremers.
Deep Event Visual Odometry.
Preprint at arXiv (Dec. 2023).
arXiv.
[806]
S. Kolek, A. Chattopadhyay, K. H. R. Chan, H. Andrade-Loarca, G. Kutyniok and R. Vidal.
Learning Interpretable Queries for Explainable Image Classification with Information Pursuit.
Preprint at arXiv (Dec. 2023).
arXiv.
[805]
Y. Sale, P. Hofman, L. Wimmer, E. Hüllermeier and T. Nagler.
Second-Order Uncertainty Quantification: Variance-Based Measures.
Preprint at arXiv (Dec. 2023).
arXiv.
[804]
C. A. Scholbeck, J. Moosbauer, G. Casalicchio, H. Gupta, B. Bischl and C. Heumann.
Position Paper: Bridging the Gap Between Machine Learning and Sensitivity Analysis.
Preprint at arXiv (Dec. 2023).
arXiv.
[803]
D. Rügamer, F. Pfisterer, B. Bischl and B. Grün.
Mixture of Experts Distributional Regression: Implementation Using Robust Estimation with Adaptive First-order Methods.
Advances in Statistical Analysis (Nov. 2023).
DOI.
[802]
B. H. Lange, S. Nyholm and J. Blumenthal-Barby.
Responsibility Gaps and Black Box Healthcare Ai: Shared Responsibilization as a Solution.
Digital Society 2.52 (Nov. 2023).
DOI.
[801]
L. Bothmann, L. Wimmer, O. Charrakh, T. Weber, H. Edelhoff, W. Peters, H. Nguyen, C. Benjamin and A. Menzel.
Automated wildlife image classification: An active learning tool for ecological applications.
Ecological Informatics 77 (Nov. 2023).
DOI.
[800]
C. Wachinger, T. N. Wolf and S. Pölsterl.
Deep learning for the prediction of type 2 diabetes mellitus from neck-to-knee Dixon MRI in the UK biobank.
Heliyon 9.11 (Nov. 2023).
DOI.
[799]
G. De Nicola, C. Fritz, M. Mehrl and G. Kauermann.
Dependence matters: Statistical models to identify the drivers of tie formation in economic networks.
Journal of Economic Behavior and Organization 215 (Nov. 2023).
DOI.
[798]
S. Feuerriegel, R. DiResta, J. A. Goldstein, S. Kumar, P. Lorenz-Spreen, M. Tomz and N. .
Research can help to tackle AI-generated disinformation.
Nature Human Behaviour 7 (Nov. 2023).
DOI.
[797]
B. Deiseroth, M. Meuer, N. Gritsch, C. Eichenberg, P. Schramowski, M. Aßenmacher and K. Kersting.
Divergent Token Metrics: Measuring degradation to prune away LLM components -- and optimize quantization.
Preprint at arXiv (Nov. 2023).
arXiv.
[796]
M. S. Deka, L. Sang and D. Cremers.
Erasing the Ephemeral: Joint Camera Refinement and Transient Object Removal for Street View Synthesis.
Preprint at arXiv (Nov. 2023).
arXiv.
[795]
A. Köksal, R. Aksitov and C.-C. Chang.
Hallucination Augmented Recitations for Language Models.
Preprint at arXiv (Nov. 2023).
arXiv.
[794]
D. Komorowicz, L. Sang, F. Maiwald and D. Cremers.
Coloring the Past: Neural Historical Buildings Reconstruction from Archival Photography.
Preprint at arXiv (Nov. 2023).
arXiv.
[793]
W. Lai, V. Hangya and A. Fraser.
Extending Multilingual Machine Translation through Imitation Learning.
Preprint at arXiv (Nov. 2023).
arXiv.
[792]
A. Scagliotti and S. Farinelli.
Normalizing flows as approximations of optimal transport maps via linear-control neural ODEs.
Preprint at arXiv (Nov. 2023).
arXiv.
[791]
T. Weber, M. Ingrisch, B. Bischl and D. Rügamer.
Unreading Race: Purging Protected Features from Chest X-ray Embeddings.
Under review. Preprint at arXiv (Nov. 2023).
arXiv.
[790]
A. Maldonado, L. Zellner, S. Strickroth and T. Seidl.
Process Mining Techniques for Collusion Detection in Online Exams.
2nd International Workshop 'Education meets Process Mining' (EduPM 2023) organized with the 5th International Conference on Process Mining (ICPM 2023). Rome, Italy, Oct 23-27, 2023.
DOI.
[789]
C. Leiber, L. Miklautz, C. Plant and C. Böhm.
Application of Deep Clustering Algorithms.
32nd ACM International Conference on Information and Knowledge Management (CIKM 2023). Birmingham, UK, Oct 21-25, 2023.
DOI.
[788]
Y. Xin, X. Zuo, D. Lu and S. Leutenegger.
SimpleMapping: Real-time visual-inertial dense mapping with deep multi-view stereo.
IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR 2023). Sydney, Australia, Oct 16-20, 2023.
DOI.
[787]
L. Miklautz, A. Shkabrii, C. Leiber, B. Tobias, B. Seidl, E. Weissensteiner, A. Rausch, C. Böhm and C. Plant.
Non-Redundant Image Clustering of Early Medieval Glass Beads.
10th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2023). Thessaloniki, Greece, Oct 09-13, 2023.
DOI.
[786]
J. Hanselle, J. Fürnkranz and E. Hüllermeier.
Probabilistic Scoring Lists for Interpretable Machine Learning.
26th International Conference on Discovery Science (DS 2023). Porto, Portugal, Oct 09-11, 2023.
DOI.
[785]
J. Brandt, E. Schede, S. Sharma, V. Bengs, E. Hüllermeier and K. Tierney.
Contextual Preselection Methods in Pool-based Realtime Algorithm Configuration.
Conference on Lernen. Wissen. Daten. Analysen (LWDA 2023). Marburg, Germany, Oct 09-11, 2023.
PDF.
[784]
J. Hanselle, J. Kornowicz, S. Heid, K. Thommes and E. Hüllermeier.
Comparing Humans and Algorithms in Feature Ranking: A Case-Study in the Medical Domain.
Conference on Lernen. Wissen. Daten. Analysen (LWDA 2023). Marburg, Germany, Oct 09-11, 2023.
PDF.
[783]
R. Holland, O. Leingang, C. Holmes, P. Anders, R. Kaye, S. Riedl, J. C. Paetzold, I. Ezhov, H. Bogunović, U. Schmidt-Erfurth, H. P. N. Scholl, S. Sivaprasad, A. J. Lotery, D. Rückert and M. J. Menten.
Clustering Disease Trajectories in Contrastive Feature Space for Biomarker Proposal in Age-Related Macular Degeneration.
26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023). Vancouver, Canada, Oct 08-12, 2023.
DOI.
[782]
N. Stolt-Ansó, J. McGinnis, J. Pan, K. Hammernik and D. Rückert.
NISF: Neural implicit segmentation functions.
26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023). Vancouver, Canada, Oct 08-12, 2023.
DOI.
[781]
Y. Yeganeh, A. Farshad and N. Navab.
Anatomy-Aware Masking for Inpainting in Medical Imaging.
3rd Workshop on Shape in Medical Imaging (ShapeMI 2023) at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023). Vancouver, Canada, Oct 08-12, 2023.
DOI.
[780]
L. Haliburton, S. Kheirinejad, A. Schmidt and S. Mayer.
Exploring Smart Standing Desks to Foster a Healthier Workplace.
ACM Conference on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT 2023). Cancun, Mexico, Oct 08-12, 2023.
DOI.
[779]
L. Haliburton, S. Y. Schött, L. Hirsch, R. Welsch and A. Schmidt.
Feeling the Temperature of the Room: Unobtrusive Thermal Display of Engagement during Group Communication.
ACM Conference on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT 2023). Cancun, Mexico, Oct 08-12, 2023.
DOI.
[778]
M. Zaiss, H. N. Dang, V. Golkov, J. Rajput, D. Cremers, F. Knoll and A. Maier.
GPT4MR: Exploring GPT-4 as an MR Sequence and Reconstruction Programming Assistant.
39th Annual Meeting of the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB 2023). Basel, Switzerland, Oct 04-07, 2023.
URL.
[777]
M. Bernhard, N. Strauß and M. Schubert.
MapFormer: Boosting Change Detection by Using Pre-change Information.
IEEE/CVF International Conference on Computer Vision (ICCV 2023). Paris, France, Oct 02-06, 2023.
DOI.
[776]
H. Chen, A. Frikha, D. Krompass, J. Gu and V. Tresp.
FRAug: Tackling Federated Learning with Non-IID Features via Representation Augmentation.
IEEE/CVF International Conference on Computer Vision (ICCV 2023). Paris, France, Oct 02-06, 2023.
DOI.
[775]
M. B Colomer, P. L. Dovesi, T. Panagiotakopoulos, J. F. Carvalho, L. Härenstam-Nielsen, H. Azizpour, H. Kjellström, D. Cremers and M. Poggi.
To adapt or not to adapt? Real-time adaptation for semantic segmentation.
IEEE/CVF International Conference on Computer Vision (ICCV 2023). Paris, France, Oct 02-06, 2023.
DOI.
[774]
M. Gao, P. Roetzer, M. Eisenberger, Z. Lähner, M. Moeller, D. Cremers and F. Bernard.
ΣIGMA: Quantum Scale-Invariant Global Sparse Shape Matching.
IEEE/CVF International Conference on Computer Vision (ICCV 2023). Paris, France, Oct 02-06, 2023.
DOI.
[773]
H. Li, J. Dong, B. Wen, M. Gao, T. Huang, Y. H. Liu and D. Cremers.
DDIT: Semantic Scene Completion via Deformable Deep Implicit Templates.
IEEE/CVF International Conference on Computer Vision (ICCV 2023). Paris, France, Oct 02-06, 2023.
DOI.
[772]
H. Li, J. Gu, R. Koner, S. Sharifzadeh and V. Tresp.
Do DALL-E and Flamingo Understand Each Other?.
IEEE/CVF International Conference on Computer Vision (ICCV 2023). Paris, France, Oct 02-06, 2023.
DOI.
[771]
M. J. Menten, J. C. Paetzold, V. A. Zimmer, S. Shit, I. Ezhov, R. Holland, M. Probst, J. A. Schnabel and D. Rückert.
A skeletonization algorithm for gradient-based optimization.
IEEE/CVF International Conference on Computer Vision (ICCV 2023). Paris, France, Oct 02-06, 2023.
DOI.
[770]
Y. Xia, M. Gladkova, R. Wang, Q. Li, U. Stilla, J. F. Henriques and D. Cremers.
CASSPR: Cross Attention Single Scan Place Recognition.
IEEE/CVF International Conference on Computer Vision (ICCV 2023). Paris, France, Oct 02-06, 2023.
DOI.
[769]
Y. Yeganeh, A. Farshad, P. Weinberger, S.-A. Ahmadi, E. Adeli and N. Navab.
Transformers pay attention to convolutions leveraging emerging properties of vits by dual attention-image network.
IEEE/CVF International Conference on Computer Vision (ICCV 2023). Paris, France, Oct 02-06, 2023.
DOI.
[768]
G. Zhang, J. Ren, J. Gu and V. Tresp.
Multi-event Video-Text Retrieval.
IEEE/CVF International Conference on Computer Vision (ICCV 2023). Paris, France, Oct 02-06, 2023.
DOI.
GitHub.
[767]
A. Farshad, Y. Yeganeh, Y. Chi, C. Shen, B. Ommer and N. Navab.
Scenegenie: Scene graph guided diffusion models for image synthesis.
Workshops at the IEEE/CVF International Conference on Computer Vision (ICCV 2023). Paris, France, Oct 02-06, 2023.
DOI.
[766]
A. Scagliotti and P. Colli Franzone.
A subgradient method with constant step-size for l1-composite optimization.
Bolletino dell Unione Matematica Italiana (Oct. 2023).
DOI.
[765]
R. L. Bach, C. Kern, H. Mautner and F. Kreuter.
The impact of modeling decisions in statistical profiling.
Data and Policy 5 (Oct. 2023).
DOI.
[764]
K. Riedl.
Leveraging Memory Effects and Gradient Information in Consensus-Based Optimisation: On Global Convergence in Mean-Field Law.
European Journal of Applied Mathematics (Oct. 2023).
DOI.
[763]
J. Pan, C. Zhou, M. Gladkova, Q. Khan and D. Cremers.
Robust Autonomous Vehicle Pursuit without Expert Steering Labels.
IEEE Robotics and Automation Letters 8.10 (Oct. 2023).
DOI.
[762]
T. Beker, H. Ansari, S. Montazeri, Q. Song and X. Zhu.
Deep Learning for Subtle Volcanic Deformation Detection With InSAR Data in Central Volcanic Zone.
IEEE Transactions on Geoscience and Remote Sensing 61 (Oct. 2023).
DOI.
[761]
S. Chen, Y. Shi, Z. Xiong and X. Zhu.
HTC-DC Net: Monocular Height Estimation From Single Remote Sensing Images.
IEEE Transactions on Geoscience and Remote Sensing 61 (Oct. 2023).
DOI.
[760]
S. Schäfer, D. F. Henning and S. Leutenegger.
GloPro: Globally-Consistent Uncertainty-Aware 3D Human Pose Estimation and Tracking in the Wild.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023). Detroit, MI, USA, Oct 01-05, 2023.
DOI.
[759]
Y. R. Shrestha, G. von Krogh and S. Feuerriegel.
Building open-source AI.
Nature Computational Science 3.11 (Oct. 2023).
DOI.
[758]
U. Fischer Abaigar, C. Kern, N. Barda and F. Kreuter.
Bridging the Gap: Towards an Expanded Toolkit for ML-Supported Decision-Making in the Public Sector.
Preprint at arXiv (Oct. 2023).
arXiv.
[757]
M. Fornasier, P. Richtárik, K. Riedl and L. Sun.
Consensus-Based Optimization with Truncated Noise.
Preprint at arXiv (Oct. 2023).
arXiv.
[756]
J. Gauss, F. Scheipl and M. Herrmann.
DCSI--An improved measure of cluster separability based on separation and connectedness.
Preprint at arXiv (Oct. 2023).
arXiv.
[755]
R. Hornung, M. Nalenz, L. Schneider, A. Bender, L. Bothmann, B. Bischl, T. Augustin and A.-L. Boulesteix.
Evaluating machine learning models in non-standard settings: An overview and new findings.
Preprint at arXiv (Oct. 2023).
arXiv.
[754]
H. Löwe, C. A. Scholbeck, C. Heumann, B. Bischl and G. Casalicchio.
fmeffects: An R Package for Forward Marginal Effects.
Preprint at arXiv (Oct. 2023).
arXiv.
[753]
G. Mukobi, P. Chatain, S. Fong, R. Windesheim, G. Kutyniok, K. Bhatia and S. Alberti.
SuperHF: Supervised Iterative Learning from Human Feedback.
Preprint at arXiv (Oct. 2023).
arXiv.
[752]
M. Rauscher, A. Scagliotti and F. Pagginelli.
Shortest-path recovery from signature with an optimal control approach.
Preprint at arXiv (Oct. 2023).
arXiv.
[751]
P. Scholl, K. Bieker, H. Hauger and G. Kutyniok.
ParFam -- Symbolic Regression Based on Continuous Global Optimization .
Preprint at arXiv (Oct. 2023).
arXiv.
[750]
Y. Shen, R. Liao, Z. Han, Y. Ma and V. Tresp.
GraphextQA: A Benchmark for Evaluating Graph-Enhanced Large Language Models.
Preprint at arXiv (Oct. 2023).
arXiv.
[749]
N. Tathawadekar, N. A. K Doan, C. F. Silva and N. Thuerey.
Hybrid neural network pde solvers for reacting flows.
Preprint at arXiv (Oct. 2023).
arXiv.
[748]
F. Bongratz, A.-M. Rickmann and C. Wachinger.
Abdominal organ segmentation via deep diffeomorphic mesh deformations.
Scientific Reports 13.1 (Oct. 2023).
DOI.
[747]
J. Smids, H. Berkers, P. Le Blanc, S. Rispens and S. Nyholm.
Employers Have a Duty of Beneficence to Design for Meaningful Work: A General Argument and Logistics Warehouses as a Case Study.
The Journal of Ethics (Oct. 2023).
DOI.
[746]
L. Bothmann, S. Dandl and M. Schomaker.
Causal Fair Machine Learning via Rank-Preserving Interventional Distributions.
1st Workshop on Fairness and Bias in AI (AEQUITAS 2023) co-located with the 26th European Conference on Artificial Intelligence (ECAI 2023). Kraków, Poland, Sep 30-Oct 04, 2023.
PDF.
[745]
D. Winkel, N. Strauß, M. Schubert and T. Seidl.
Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning.
26th European Conference on Artificial Intelligence (ECAI 2023). Kraków, Poland, Sep 30-Oct 04, 2023.
DOI.
[744]
M. Bernhard, T. Hannan, N. Strauß and M. Schubert.
Context Matters: Leveraging Spatiotemporal Metadata for Semi-Supervised Learning on Remote Sensing Images.
26th European Conference on Artificial Intelligence (ECAI 2023). Kraków, Poland, Sep 30-Oct 04, 2023. To be published. Preprint at arXiv.
arXiv.
[743]
J. Herbinger, S. Dandl, F. K. Ewald, S. Loibl and G. Casalicchio.
Leveraging Model-based Trees as Interpretable Surrogate Models for Model Distillation.
3rd International Workshop on Explainable and Interpretable Machine Learning (XI-ML 2023) co-located with the 26th European Conference on Artificial Intelligence (ECAI 2023). Kraków, Poland, Sep 30-Oct 04, 2023.
DOI.
[742]
F. Weindel, A. l. Gimpel, R. N. Grass and R. Heckel.
Embracing errors is more effective than avoiding them through constrained coding for DNA data storage.
59th Annual Allerton Conference on Communication, Control, and Computing (Allerton 2023). Monticello, IL, USA, Sep 26-29, 2023.
DOI.
[741]
L. Haliburton, B. Pirker, P. Holinski, A. Schmidt, P. W. Wozniak and M. Hoppe.
VR-Hiking: Physical Exertion Benefits Mindfulness and Positive Emotions in Virtual Reality.
ACM International Conference on Mobile Human-Computer Interaction (MobileHCI 2023). Athens, Greece, Sep 26-29, 2023.
DOI.
[740]
Y. Ma, Q. Khan and D. Cremers.
Multi Agent Navigation in Unconstrained Environments Using a Centralized Attention Based Graphical Neural Network Controller.
26th IEEE International Conference on Intelligent Transportation (ITSC 2023). Bilbao, Spain, Sep 24-28, 2023.
DOI.
[739]
J. Schmidt, Q. Khan and D. Cremers.
LiDAR View Synthesis for Robust Vehicle Navigation Without Expert Labels.
26th IEEE International Conference on Intelligent Transportation (ITSC 2023). Bilbao, Spain, Sep 24-28, 2023.
DOI.
[738]
L. Bothmann, S. Strickroth, G. Casalicchio, D. Rügamer, M. Lindauer, F. Scheipl and B. Bischl.
Developing Open Source Educational Resources for Machine Learning and Data Science.
3rd Teaching Machine Learning and Artificial Intelligence Workshop. Grenoble, France, Sep 19-23, 2023.
URL.
[737]
S. Urchs, V. Thurner, M. Aßenmacher, C. Heumann and S. Thiemichen.
How Prevalent is Gender Bias in ChatGPT? - Exploring German and English ChatGPT Responses.
1st Workshop on Biased Data in Conversational Agents (BDCA 2023) co-located with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, Sep 18-22, 2023.
arXiv.
[736]
I. T. Öztürk, R. Nedelchev, C. Heumann, E. Garces Arias, M. Roger, B. Bischl and M. Aßenmacher.
How Different Is Stereotypical Bias Across Languages?.
3rd Workshop on Bias and Fairness in AI (BIAS 2023) co-located with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, Sep 18-22, 2023.
arXiv.
[735]
M. Aßenmacher, L. Rauch, J. Goschenhofer, A. Stephan, B. Bischl, B. Roth and B. Sick.
Towards Enhancing Deep Active Learning with Weak Supervision and Constrained Clustering.
7th International Workshop on Interactive Adaptive Learning (IAL 2023) co-located with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, Sep 18-22, 2023.
URL.
[734]
S. Dandl, G. Casalicchio, B. Bischl and L. Bothmann.
Interpretable Regional Descriptors: Hyperbox-Based Local Explanations.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, Sep 18-22, 2023.
DOI.
[733]
S. Gilhuber, J. Busch, D. Rotthues, C. M. M. Frey and T. Seidl.
DiffusAL: Coupling Active Learning with Graph Diffusion for Label-Efficient Node Classification.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, Sep 18-22, 2023.
DOI.
[732]
S. Gilhuber, R. Hvingelby, M. L. A. Fok and T. Seidl.
How to Overcome Confirmation Bias in Semi-Supervised Image Classification by Active Learning.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, Sep 18-22, 2023.
DOI.
[731]
S. Haas and E. Hüllermeier.
Rectifying Bias in Ordinal Observational Data Using Unimodal Label Smoothing.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, Sep 18-22, 2023.
DOI.
[730]
M. Klein, C. Leiber and C. Böhm.
k-SubMix: Common Subspace Clustering on Mixed-Type Data.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, Sep 18-22, 2023.
DOI.
[729]
M. Muschalik, F. Fumagalli, B. Hammer and E. Hüllermeier.
iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, Sep 18-22, 2023.
DOI.
[728]
L. Rauch, M. Aßenmacher, D. Huseljic, M. Wirth, B. Bischl and B. Sick.
ActiveGLAE: A Benchmark for Deep Active Learning with Transformers.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, Sep 18-22, 2023.
DOI.
[727]
J. G. Wiese, L. Wimmer, T. Papamarkou, B. Bischl, S. Günnemann and D. Rügamer.
Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, Sep 18-22, 2023. Best paper award.
DOI.
[726]
T. Kaufmann, S. Ball, J. Beck, F. Kreuter and E. Hüllermeier.
On the Challenges and Practices of Reinforcement Learning from Real Human Feedback.
The First Workshop on Hybrid Human-Machine Learning and Decision Making (HLDM 2023) co-located with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2023). Turin, Italy, Sep 18-22, 2023.
PDF.
[725]
F. Hoppe, C. M. Verdun, H. Laus, F. Krahmer and H. Rauhut.
Uncertainty Quantification For Learned ISTA.
IEEE Workshop on Machine Learning for Signal Processing (MLSP 2023). Rome, Italy, Sep 17-20, 2023.
DOI.
[724]
Ç. Yapar, F. Jaensch, L. Ron, G. Kutyniok and G. Caire.
Overview of the Urban Wireless Localization Competition.
IEEE Workshop on Machine Learning for Signal Processing (MLSP 2023). Rome, Italy, Sep 17-20, 2023.
DOI.
[723]
A. Javanmardi, Y. Sale, P. Hofman and E. Hüllermeier.
Conformal Prediction with Partially Labeled Data.
12th Symposium on Conformal and Probabilistic Prediction with Applications (COPA 2023). Limassol, Cyprus, Sep 13-15, 2023.
URL.
[722]
S. F. Fischer, L. Harutyunyan, M. Feurer and B. Bischl.
OpenML-CTR23 - A curated tabular regression benchmarking suite.
International Conference on Automated Machine Learning (AutoML 2023) - Workshop Track. Berlin, Germany, Sep 12-15, 2023.
URL.
[721]
L. O. Purucker, L. Schneider, M. Anastacio, J. Beel, B. Bischl and H. Hoos.
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML.
International Conference on Automated Machine Learning (AutoML 2023). Berlin, Germany, Sep 12-15, 2023.
URL.
[720]
S. Segel, H. Graf, A. Tornede, B. Bischl and M. Lindauer.
Symbolic Explanations for Hyperparameter Optimization.
International Conference on Automated Machine Learning (AutoML 2023). Berlin, Germany, Sep 12-15, 2023.
URL.
[719]
P. Koch, G. V. Nuñez, E. Garces Arias, C. Heumann, M. Schöffel, A. Häberlin and M. Aßenmacher.
A tailored Handwritten-Text-Recognition System for Medieval Latin.
1st Workshop on Ancient Language Processing (ALP 2023) co-located with the Conference on Recent Advances in Natural Language Processing (RANLP 2023). Varna, Bulgaria, Sep 08, 2023.
URL.
[718]
E. Nie, H. Schmid and H. Schütze.
Cross-Lingual Constituency Parsing for Middle High German: A Delexicalized Approach.
1st Workshop on Ancient Language Processing (ALP 2023) co-located with the Conference on Recent Advances in Natural Language Processing (RANLP 2023). Varna, Bulgaria, Sep 08, 2023.
URL.
[717]
V. Hangya and A. Fraser.
LMU at HaSpeeDe3: Multi-Dataset Training for Cross-Domain Hate Speech Detection.
Final Workshop of the 8th evaluation campaign EVALITA 2023. Parma, Italy, Sep 07-08, 2023.
PDF.
[716]
S. Nyholm.
Is Academic Enhancement Possible by Means of Generative Ai-Based Digital Twins?.
American Journal of Bioethics 23.10 (Sep. 2023).
DOI.
[715]
H. A. Gündüz, M. Binder, X.-Y. To, R. Mreches, B. Bischl, A. C. McHardy, P. C. Münch and M. Rezaei.
A self-supervised deep learning method for data-efficient training in genomics.
Communications Biology 6.928 (Sep. 2023).
DOI.
[714]
D. Bär, N. Pröllochs and S. Feuerriegel.
New Threats to Society from Free-Speech Social Media Platforms.
Communications of the ACM 66.10 (Sep. 2023).
DOI.
[713]
M. Toetzke, B. Probst and S. Feuerriegel.
Leveraging large language models to monitor climate technology innovation.
Environmental Research Letters 18.9 (Sep. 2023).
DOI.
[712]
F. Fan, Y. Shi, T. Guggemos and X. Zhu.
Hybrid Quantum-Classical Convolutional Neural Network Model for Image Classification.
IEEE Transactions on Neural Networks and Learning Systems (Sep. 2023).
DOI.
[711]
B. X. W. Liew, F. M. Kovacs, D. Rügamer and A. Royuela.
Automatic variable selection algorithms in prognostic factor research in neck pain.
Journal of Clinical Medicine (Sep. 2023).
DOI.
[710]
S. Hoffmann, F. Scheipl and A.-L. Boulesteix.
Reproduzierbare und replizierbare Forschung.
Moderne Verfahren der Angewandten Statistik (Sep. 2023).
URL.
[709]
V. Ehm, P. Roetzer, M. Eisenberger, M. Gao, F. Bernard and D. Cremers.
Geometrically Consistent Partial Shape Matching.
Preprint at arXiv (Sep. 2023).
arXiv.
[708]
Y. Shan, Y. Xia, Y. Chen and D. Cremers.
SCP: Scene Completion Pre-training for 3D Object Detection.
Preprint at arXiv (Sep. 2023).
arXiv.
[707]
R. P. Prager, K. Dietrich, L. Schneider, L. Schäpermeier, B. Bischl, P. Kerschke, H. Trautmann and O. Mersmann.
Neural Networks as Black-Box Benchmark Functions Optimized for Exploratory Landscape Features.
17th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA 2023). Potsdam, Germany, Aug 30-Sep 01, 2023.
DOI.
[706]
P. Gupta, J. P. Drees and E. Hüllermeier.
Automated Side-Channel Attacks using Black-Box Neural Architecture Search.
18th International Conference on Availability, Reliability and Security (ARES 2023). Benevento, Italy, Aug 29-Sep 01, 2023.
DOI.
[705]
A. Scheppach, H. A. Gündüz, E. Dorigatti, P. C. Münch, A. C. McHardy, B. Bischl, M. Rezaei and M. Binder.
Neural Architecture Search for Genomic Sequence Data.
20th IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology (CIBCB 2023). Eindhoven, The Netherlands, Aug 29-31, 2023.
DOI.
[704]
L. Rottkamp, N. Strauss and M. Schubert.
DEAR: Dynamic Electric Ambulance Redeployment.
18th International Symposium on Spatial and Temporal Databases (SSTD 2023). Calgary, Canada, Aug 23-25, 2023.
DOI.
[703]
M. Windl, A. Scheidle, C. George and S. Mayer.
Investigating Security Indicators for Hyperlinking Within the Metaverse.
19th Symposium on Usable Privacy and Security (SOUPS 2023). Anaheim, CA, USA, Aug 06-08, 2023.
URL.
[702]
A. Beer, A. Draganov, E. Hohma, P. Jahn, C. M. M. Frey and I. Assent.
Connecting the Dots — Density-Connectivity Distance unifies DBSCAN, k-Center and Spectral Clustering.
29th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2023). Long Beach, CA, USA, Aug 06-10, 2023.
DOI.
[701]
M. Caprio, Y. Sale, E. Hüllermeier and I. Lee.
A novel Bayes' Theorem for Upper Probabilities.
International Workshop on Epistemic Uncertainty in Artificial Intelligence (Epi UAI 2023). Pittsburgh, PA, USA, Aug 04, 2023.
DOI.
[700]
J. Rodemann, J. Goschenhofer, E. Dorigatti, T. Nagler and T. Augustin.
Approximately Bayes-optimal pseudo-label selection.
39th Conference on Uncertainty in Artificial Intelligence (UAI 2023). Pittsburgh, PA, USA, Aug 01-03, 2023.
URL.
[699]
Y. Sale, M. Caprio and E. Hüllermeier.
Is the Volume of a Credal Set a Good Measure for Epistemic Uncertainty?.
39th Conference on Uncertainty in Artificial Intelligence (UAI 2023). Pittsburgh, PA, USA, Aug 01-03, 2023.
URL.
[698]
L. Wimmer, Y. Sale, P. Hofman, B. Bischl and E. Hüllermeier.
Quantifying Aleatoric and Epistemic Uncertainty in Machine Learning: Are Conditional Entropy and Mutual Information Appropriate Measures?.
39th Conference on Uncertainty in Artificial Intelligence (UAI 2023). Pittsburgh, PA, USA, Aug 01-03, 2023.
URL.
[697]
S. Endt, M. Engel, E. Naldi, R. Assereto, M. Molendowska, L. Mueller, C. Mayrink Verdun, C. M. Pirkl, M. Palombo, D. K. Jones and M. I. Menzel.
In vivo myelin water quantification using diffusion--relaxation correlation MRI: A comparison of 1D and 2D methods.
Applied Magnetic Resonance 54 (Aug. 2023).
DOI.
[696]
F. Ott, D. Rügamer, L. Heublein, B. Bischl and C. Mutschler.
Auxiliary Cross-Modal Representation Learning With Triplet Loss Functions for Online Handwriting Recognition.
IEEE Access 11 (Aug. 2023).
DOI.
[695]
D. Wolffram, S. Abbott, M. an der Heiden, S. Funk, F. Günther, D. Hailer, S. Heyder, T. Hotz, J. van de Kassteele, H. Küchenhoff, S. Müller-Hansen, D. Syliqi, A. Ullrich, M. Weigert, M. Schienle and J. Bracher.
Collaborative nowcasting of COVID-19 hospitalization incidences in Germany.
PLOS Computational Biology 19.8 (Aug. 2023).
DOI.
[694]
H. Andrade-Loarca, J. Hege, D. Cremers and G. Kutyniok.
Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape Reconstruction from Point Clouds.
Preprint at arXiv (Aug. 2023).
arXiv.
[693]
S. Bamberger, R. Heckel and F. Krahmer.
Approximating Positive Homogeneous Functions with Scale Invariant Neural Networks.
Preprint at arXiv (Aug. 2023).
arXiv.
[692]
Y. Li, Y. Zhang, K. Kawaguchi, A. Khakzar, B. Bischl and M. Rezaei.
A Dual-Perspective Approach to Evaluating Feature Attribution Methods.
Preprint at arXiv (Aug. 2023).
arXiv.
[691]
A. Volkmann, A. Stöcker, F. Scheipl and S. Greven.
Multivariate Functional Additive Mixed Models.
Statistical Modelling 23.4 (Aug. 2023).
DOI.
[690]
M. K. Belaid, R. Bornemann, M. Rabus, R. Krestel and E. Hüllermeier.
Compare-xAI: Toward Unifying Functional Testing Methods for Post-hoc XAI Algorithms into a Multi-dimensional Benchmark.
1st World Conference on eXplainable Artificial Intelligence (xAI 2023). Lisbon, Portugal, Jul 26-28, 2023.
DOI.
[689]
C. Molnar, T. Freiesleben, G. König, J. Herbinger, T. Reisinger, G. Casalicchio, M. N. Wright and B. Bischl.
Relating the Partial Dependence Plot and Permutation Feature Importance to the Data Generating Process.
1st World Conference on eXplainable Artificial Intelligence (xAI 2023). Lisbon, Portugal, Jul 26-28, 2023.
DOI.
[688]
M. Muschalik, F. Fumagalli, R. Jagtani, B. Hammer and E. Hüllermeier.
iPDP: On Partial Dependence Plots in Dynamic Modeling Scenarios.
1st World Conference on eXplainable Artificial Intelligence (xAI 2023). Lisbon, Portugal, Jul 26-28, 2023. Best Paper Award.
DOI.
[687]
S. Alberti, N. Dern, L. Thesing and G. Kutyniok.
Sumformer: Universal Approximation for Efficient Transformers.
2nd Annual Workshop on Topology, Algebra, and Geometry in Machine Learning (TAG-ML 2023) at the 40th International Conference on Machine Learning (ICML 2023). Honolulu, Hawaii, Jul 23-29, 2023.
URL.
[686]
V. Bengs, E. Hüllermeier and W. Waegeman.
On Second-Order Scoring Rules for Epistemic Uncertainty Quantification.
40th International Conference on Machine Learning (ICML 2023). Honolulu, Hawaii, Jul 23-29, 2023.
URL.
[685]
V. Melnychuk, D. Frauen and S. Feuerriegel.
Normalizing Flows for Interventional Density Estimation.
40th International Conference on Machine Learning (ICML 2023). Honolulu, Hawaii, Jul 23-29, 2023.
URL.
[684]
T. Nagler.
Statistical Foundations of Prior-Data Fitted Networks.
40th International Conference on Machine Learning (ICML 2023). Honolulu, Hawaii, Jul 23-29, 2023.
URL.
[683]
D. Rügamer.
A New PHO-rmula for Improved Performance of Semi-Structured Networks.
40th International Conference on Machine Learning (ICML 2023). Honolulu, Hawaii, Jul 23-29, 2023.
URL.
[682]
N. Stucki, J. C. Paetzold, S. Shit, B. Menze and U. Bauer.
Topologically faithful image segmentation via induced matching of persistence barcodes.
40th International Conference on Machine Learning (ICML 2023). Honolulu, Hawaii, Jul 23-29, 2023.
URL.
[681]
C. Tomani, F. Waseda, Y. Shen and D. Cremers.
Beyond In-Domain Scenarios: Robust Density-Aware Calibration.
40th International Conference on Machine Learning (ICML 2023). Honolulu, Hawaii, Jul 23-29, 2023.
URL.
[680]
M. Biloš, K. Rasul, A. Schneider, Y. Nevmyvaka and S. Günnemann.
Modeling Temporal Data as Continuous Functions with Process Diffusion.
40th International Conference on Machine Learning (ICML 2023). Honolulu, Hawaii, Jul 23-29, 2023. Poster.
URL.
[679]
J. Goschenhofer, B. Bischl and Z. Kira.
ConstraintMatch for Semi-constrained Clustering.
International Joint Conference on Neural Networks (IJCNN 2023). Gold Coast Convention and Exhibition Centre, Queensland, Australia, Jul 18-23, 2023.
DOI.
[678]
Y. Zhang, Y. Ma, T. Seidl and V. Tresp.
Adaptive Multi-Resolution Attention with Linear Complexity.
International Joint Conference on Neural Networks (IJCNN 2023). Gold Coast Convention and Exhibition Centre, Queensland, Australia, Jul 18-23, 2023.
DOI.
[677]
C. Kolb, B. Bischl, C. L. Müller and D. Rügamer.
Sparse Modality Regression.
37th International Workshop on Statistical Modelling (IWSM 2023). Dortmund, Germany, Jul 17-21, 2023. Best Paper Award.
PDF.
[676]
A. Giovagnoli, Y. Ma, M. Schubert and V. Tresp.
QNEAT: Natural Evolution of Variational Quantum Circuit Architecture.
Genetic and Evolutionary Computation Conference (GECCO 2023). Lisbon, Portugal, Jul 15-19, 2023.
DOI.
[675]
L. Schneider, B. Bischl and J. Thomas.
Multi-Objective Optimization of Performance and Interpretability of Tabular Supervised Machine Learning Models.
Genetic and Evolutionary Computation Conference (GECCO 2023). Lisbon, Portugal, Jul 15-19, 2023.
DOI.
[674]
M. Wever, M. Özdogan and E. Hüllermeier.
Cooperative Co-Evolution for Ensembles of Nested Dichotomies for Multi-Class Classification.
Genetic and Evolutionary Computation Conference (GECCO 2023). Lisbon, Portugal, Jul 15-19, 2023.
DOI.
[673]
T. Fuchs, F. Krahmer and R. Kueng.
Greedy-type sparse recovery from heavy-tailed measurements.
International Conference on Sampling Theory and Applications (SampTA 2023). Yale, CT, USA, Jul 10-14, 2023.
DOI.
[672]
F. Hoppe, F. Krahmer, C. M. Verdun, M. I. Menzel and H. Rauhut.
Sampling Strategies for Compressive Imaging Under Statistical Noise.
International Conference on Sampling Theory and Applications (SampTA 2023). Yale, CT, USA, Jul 10-14, 2023.
DOI.
[671]
R. Joy, F. Krahmer, A. Lupoli and R. Ramakrishan.
Quantization of Bandlimited Functions Using Random Samples.
International Conference on Sampling Theory and Applications (SampTA 2023). Yale, CT, USA, Jul 10-14, 2023.
DOI.
[670]
F. Krahmer, H. Lyu, R. Saab, A. Veselovska and R. Wang.
Quantization of Bandlimited Graph Signals.
International Conference on Sampling Theory and Applications (SampTA 2023). Yale, CT, USA, Jul 10-14, 2023.
DOI.
[669]
F. Krahmer and A. Veselovska.
Digital Halftoning via Mixed-Order Weighted Σ∆ Modulation.
International Conference on Sampling Theory and Applications (SampTA 2023). Yale, CT, USA, Jul 10-14, 2023.
DOI.
[668]
Y. Liu, A. Chronopoulou, H. Schütze and A. Fraser.
On the Copying Problem of Unsupervised NMT: A Training Schedule with a Language Discriminator Loss.
20th International Conference on Spoken Language Translation (IWSLT 2023). Toronto, Canada, Jul 09-14, 2023.
DOI.
[667]
A. Imani, P. Lin, A. H. Kargaran, S. Severini, M. J. Sabet, N. Kassner, C. Ma, H. Schmid, A. F. T. Martins, F. Yvon and H. Schütze.
Glot500: Scaling Multilingual Corpora and Language Models to 500 Languages.
61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, Jul 09-14, 2023.
DOI.
GitHub.
[666]
Y. Liu, S. Feng, D. Wang, Y. Zhang and H. Schütze.
PVGRU: Generating Diverse and Relevant Dialogue Responses via Pseudo-Variational Mechanism.
61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, Jul 09-14, 2023.
DOI.
[665]
Y. Liu, H. Ye, L. Weissweiler, P. Wicke, R. Pei, R. Zangenfeind and H. Schütze.
A Crosslingual Investigation of Conceptualization in 1335 Languages.
61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, Jul 09-14, 2023.
DOI.
[664]
A. Modarressi, M. Fayyaz, E. Aghazadeh, Y. Yaghoobzadeh and M. T. Pilehvar.
DecompX: Explaining Transformers Decisions by Propagating Token Decomposition.
61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, Jul 09-14, 2023.
DOI.
[663]
E. Nie, S. Liang, H. Schmid and H. Schütze.
Cross-Lingual Retrieval Augmented Prompt for Low-Resource Languages.
61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, Jul 09-14, 2023.
DOI.
[662]
K. Hämmerl, B. Deiseroth, P. Schramowski, J. Libovický, C. A. Rothkopf, A. Fraser and K. Kersting.
Speaking Multiple Languages Affects the Moral Bias of Language Models.
Findings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, Jul 09-14, 2023.
DOI.
[661]
K. Hämmerl, A. Fastowski, J. Libovický and A. Fraser.
Exploring Anisotropy and Outliers in Multilingual Language Models for Cross-Lingual Semantic Sentence Similarity.
Findings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, Jul 09-14, 2023.
DOI.
[660]
Z. Han, R. Liao, J. Gu, Y. Zhang, Z. Ding, Y. Gu, H. Köppl, H. Schütze and V. Tresp.
ECOLA: Enhanced Temporal Knowledge Embeddings with Contextualized Language Representations.
Findings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, Jul 09-14, 2023.
DOI.
[659]
L. Weber and B. Plank.
ActiveAED: A Human in the Loop Improves Annotation Error Detection.
Findings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, Jul 09-14, 2023.
DOI.
[658]
P. Wicke.
LMs stand their Ground: Investigating the Effect of Embodiment in Figurative Language Interpretation by Language Models.
Findings of the 61th Annual Meeting of the Association for Computational Linguistics (ACL 2023). Toronto, Canada, Jul 09-14, 2023.
DOI.
[657]
C. Kern, R. L. Bach, H. Mautner and F. Kreuter.
When Small Decisions Have Big Impact: Fairness Implications of Algorithmic Profiling Schemes.
2nd European Workshop on Algorithmic Fairness (EWAF 2023). Winterthur, Switzerland, Jul 07-09, 2023.
URL.
[656]
P. Wicke, L. K. Şenel, S. Zhang, L. Figueredo, A. Naceri, S. Haddadin and H. Schütze.
Towards Language-Based Modulation of Assistive Robots through Multimodal Models.
2nd Geriatronics Summit (Geriatronics Summit 2023). Garmisch-Partenkirchen, Germany, Jul 02-03, 2023.
arXiv.
[655]
G. Kutyniok.
An introduction to the mathematics of deep learning.
European Congress of Mathematics (Jul. 2023).
DOI.
[654]
B. X. W. Liew, D. Rügamer, Q. Mei, Z. Altai, X. Zhu, X. Zhai and N. Cortes.
Smooth and accurate predictions of joint contact force timeseries in gait using overparameterised deep neural networks.
Frontiers in Bioengineering and Biotechnology 11 (Jul. 2023).
DOI.
[653]
C. Fritz, G. De Nicola, S. Kevork, D. Harhoff and G. Kauermann.
Modelling the large and dynamically growing bipartite network of German patents and inventors.
Journal of the Royal Statistical Society. Series A (Statistics in Society) 186.3 (Jul. 2023).
DOI.
[652]
M. Aßenmacher, N. Sauter and C. Heumann.
Classifying multilingual party manifestos: Domain transfer across country, time, and genre.
Preprint at arXiv (Jul. 2023).
arXiv.
[651]
J. Baan, N. Daheim, E. Ilia, D. Ulmer, H.-S. Li, R. Fernández, B. Plank, R. Sennrich, C. Zerva and W. Aziz.
Uncertainty in Natural Language Generation: From Theory to Applications.
Preprint at arXiv (Jul. 2023).
arXiv.
[650]
A. Bacho, H. Boche and G. Kutyniok.
Reliable AI: Does the Next Generation Require Quantum Computing?.
Preprint at arXiv (Jul. 2023).
arXiv.
[649]
Y. Elazar, N. Kassner, S. Ravfogel, A. Feder, A. Ravichander, M. Mosbach, Y. Belinkov, H. Schütze and Y. Goldberg.
Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions.
Preprint at arXiv (Jul. 2023).
arXiv.
[648]
F. Krahmer and A. Veselovska.
Enhanced Digital Halftoning via Weighted Sigma-Delta Modulation.
SIAM Journal on Imaging Sciences 16.3 (Jul. 2023).
DOI.
[647]
S. Bahmani, O. Hahn, E. Zamfir, N. Araslanov, D. Cremers and S. Roth.
Semantic Self-adaptation: Enhancing Generalization with a Single Sample.
Transactions on Machine Learning Research (Jul. 2023).
URL.
GitHub.
[646]
C. Kolb, C. L. Müller, B. Bischl and D. Rügamer.
Smoothing the Edges: A General Framework for Smooth Optimization in Sparse Regularization using Hadamard Overparametrization.
Under Review (Jul. 2023).
arXiv.
[645]
C. Reinkemeyer, Y. Khazaei, M. Weigert, M. Hannes, R. Le Gleut, M. Plank, S. Winter, I. Norena, T. Meier, L. Xu, R. Rubio-Acero, S. Wiegrebe, T. Thu, C. Fuchs, K. Radon, I. Paunovic, C. Janke, A. Wieser, H. Küchenhoff, M. Hoelscher, N. Castelletti and KoCo Impf ORCHESTRA Working Grp KoCo Impf ORCHESTRA Working Grp.
The Prospective COVID-19 Post-Immunization Serological Cohort in Munich (KoCo-Impf): Risk Factors and Determinants of Immune Response in Healthcare Workers.
Viruses 15.7 (Jul. 2023).
DOI.
[644]
I. van Mechelen, A.-L. Boulesteix, R. Dangl, N. Dean, C. Hennig, F. Leisch, D. Steinley and M. J. Warrens.
A white paper on good research practices in benchmarking: The case of cluster analysis.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 13.6 (Jul. 2023).
DOI.
[643]
A. Farshad.
Representation learning for semantic scene understanding.
2nd International Conference on Hybrid Human-Artificial Intelligence (HHAI 2023). Munich, Germany, Jun 26-30, 2023.
DOI.
[642]
D. Azinović, O. Maury, C. Hery, M. Nießner and J. Thies.
High-Res Facial Appearance Capture from Polarized Smartphone Images.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, Jun 18-23, 2023.
DOI.
[641]
A. Bokhovkin and A. Dai.
Neural Part Priors: Learning to Optimize Part-Based Object Completion in RGB-D Scans.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, Jun 18-23, 2023.
DOI.
[640]
M. Eisenberger, A. Toker, L. Leal-Taixé and D. Cremers.
G-MSM: Unsupervised Multi-Shape Matching with Graph-based Affinity Priors.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, Jun 18-23, 2023.
DOI.
[639]
L. Härenstam-Nielsen, N. Zeller and D. Cremers.
Semidefinite Relaxations for Robust Multiview Triangulation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, Jun 18-23, 2023.
DOI.
[638]
D. Kotovenko, P. Ma, T. Milbich and B. Ommer.
Cross-Image-Attention for Conditional Embeddings in Deep Metric Learning.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, Jun 18-23, 2023.
DOI.
[637]
Y. Mansour and R. Heckel.
Zero-Shot Noise2Noise: Efficient Image Denoising without any Data.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, Jun 18-23, 2023.
DOI.
[636]
D. Muhle, L. Koestler, K. M. Jatavallabhula and D. Cremers.
Learning Correspondence Uncertainty via Differentiable Nonlinear Least Squares.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, Jun 18-23, 2023.
DOI.
[635]
J. Seidenschwarz, G. Braso, I. Elezi and L. Leal-Taixé.
Simple Cues Lead to a Strong Multi-Object Tracker.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, Jun 18-23, 2023.
DOI.
[634]
S. Weber, N. Demmel, T. Chon Chan and D. Cremers.
Power Bundle Adjustment for Large-Scale 3D Reconstruction.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, Jun 18-23, 2023.
DOI.
[633]
F. Wimbauer, N. Yang, C. Rupprecht and D. Cremers.
Behind the Scenes: Density Fields for Single View Reconstruction.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2023). Vancouver, Canada, Jun 18-23, 2023.
DOI.
[632]
D. Bär, N. Pröllochs and S. Feuerriegel.
Finding Qs: Profiling QAnon Supporters on Parler.
17th International AAAI Conference on Web and Social Media (ICWSM 2023). Limassol, Cyprus, Jun 05-08, 2023.
DOI.
[631]
F. Hoppe, F. Krahmer, C. Mayrink Verdun, M. I. Menzel and H. Rauhut.
High-Dimensional Confidence Regions in Sparse MRI.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023). Rhode Island, Greece, Jun 04-10, 2023.
DOI.
[630]
P. Scholl, A. Bacho, H. Boche and G. Kutyniok.
The Uniqueness Problem of Physical Law Learning.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023). Rhode Island, Greece, Jun 04-10, 2023.
DOI.
[629]
Ç. Yapar, F. Jaensch, R. Levie, G. Kutyniok and G. Caire.
The First Pathloss Radio Map Prediction Challenge.
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023). Rhode Island, Greece, Jun 04-10, 2023.
DOI.
[628]
X. Zuo, N. Yang, N. Merrill, B. Xu and S. Leutenegger.
Incremental Dense Reconstruction from Monocular Video with Guided Sparse Feature Volume Fusion.
IEEE Robotics and Automation Letters 8.6 (Jun. 2023).
DOI.
[627]
M. Rezaei, A. Vahidi, T. Elze, B. Bischl and M. Eslami.
Self-supervised Learning and Self-labeling Framework for Glaucoma Detection.
Investigative Ophthalmology and Visual Science 64.8 (Jun. 2023).
URL.
[626]
T. Tornede, A. Tornede, J. Hanselle, F. Mohr, M. Wever and E. Hüllermeier.
Towards Green Automated Machine Learning: Status Quo and Future Directions.
Journal of Artificial Intelligence Research 77 (Jun. 2023).
DOI.
[625]
M. Trappmann, G.-C. Haas, S. Malich, F. Keusch, S. Bähr, F. Kreuter and S. Schwarz.
Augmenting survey data with digital trace data: Is there a threat to panel retention?.
Journal of Survey Statistics and Methodology 11.3 (Jun. 2023).
DOI.
[624]
J. Herbinger, B. Bischl and G. Casalicchio.
Decomposing Global Feature Effects Based on Feature Interactions.
Preprint at arXiv (Jun. 2023).
arXiv.
[623]
K. Riedl, T. Klock, C. Geldhauser and M. Fornasier.
Gradient is All You Need?.
Preprint at arXiv (Jun. 2023).
arXiv.
[622]
R. Hornung, F. Ludwigs, J. Hagenberg and A.-L. Boulesteix.
Prediction approaches for partly missing multi-omics covariate data: A literature review and an empirical comparison study.
Wiley Interdisciplinary Reviews: Computational Statistics 16 (Jun. 2023).
DOI.
[621]
J. W. Grootjen, H. Weingärtner and S. Mayer.
Highlighting the Challenges of Blinks in Eye Tracking for Interactive Systems.
8th International Workshop on Pervasive Eye Tracking and Mobile Eye-Based Interaction (PETMEI 2023) at the ACM Symposium on Eye Tracking Research and Applications (ETRA 2023). Tübingen, Germany, May 30-Jun 02, 2023.
DOI.
[620]
T. Weber, M. Ingrisch, B. Bischl and D. Rügamer.
Cascaded Latent Diffusion Models for High-Resolution Chest X-ray Synthesis.
27th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2023). Osaka, Japan, May 25-28, 2023.
DOI.
[619]
D. Winkel, N. Strauß, M. Schubert, Y. Ma and T. Seidl.
Constrained Portfolio Management using Action Space Decomposition for Reinforcement Learning.
27th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2023). Osaka, Japan, May 25-28, 2023.
DOI.
[618]
V. Blaschke, H. Schütze and B. Plank.
A Survey of Corpora for Germanic Low-Resource Languages and Dialects.
24th Nordic Conference on Computational Linguistics (NoDaLiDa 2023). Tórshavn, Faroe Islands, May 22-24, 2023.
URL.
[617]
A. K. Wickert, C. Damke, L. Baumgärtner, E. Hüllermeier and M. Mezini.
UnGoML: Automated Classification of unsafe Usages in Go.
IEEE/ACM 20th International Conference on Mining Software Repositories (MSR 2023). Melbourne, Australia, May 15-16, 2023. FOSS (Free, Open Source Software) Impact Paper Award.
DOI.
[616]
T. Ladner and M. Althoff.
Automatic Abstraction Refinement in Neural Network Verification Using Sensitivity Analysis.
26th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2023). San Antonio, TX, USA, May 09-12, 2023.
DOI.
[615]
V. Ehm, D. Cremers and F. Bernard.
Non-Separable Multi-Dimensional Network Flows for Visual Computing.
Poster at the 44th Annual Conference of the European Association for Computer Graphics (EG 2023). Saarbrücken, Germany, May 08-12, 2023.
DOI.
[614]
V. Blaschke, H. Schütze and B. Plank.
Does Manipulating Tokenization Aid Cross-Lingual Transfer? A Study on POS Tagging for Non-Standardized Languages.
10th Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial 2023) at the 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023). Dubrovnik, Croatia, May 02-06, 2023.
DOI.
[613]
X. Wang, L. Weissweiler, H. Schütze and B. Plank.
How to Distill your BERT: An Empirical Study on the Impact of Weight Initialisation and Distillation Objectives.
17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023). Dubrovnik, Croatia, May 02-06, 2023.
DOI.
[612]
A. Chronopoulou, D. Stojanovski and A. Fraser.
Language-Family Adapters for Low-Resource Multilingual Neural Machine Translation.
6th Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2023) at the 17th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2023). Dubrovnik, Croatia, May 02-06, 2023.
DOI.
[611]
D. Frauen and S. Feuerriegel.
Estimating individual treatment effects under unobserved confounding using binary instruments.
11th International Conference on Learning Representations (ICLR 2023). Kigali, Rwanda, May 01-05, 2023.
URL.
[610]
T. Klug and R. Heckel.
Scaling Laws For Deep Learning Based Image Reconstruction.
11th International Conference on Learning Representations (ICLR 2023). Kigali, Rwanda, May 01-05, 2023.
URL.
[609]
R. Paolino, A. Bojchevski, S. Günnemann, G. Kutyniok and R. Levie.
Unveiling the Sampling Density in Non-Uniform Geometric Graphs.
11th International Conference on Learning Representations (ICLR 2023). Kigali, Rwanda, May 01-05, 2023.
URL.
[608]
T. Pielok, B. Bischl and D. Rügamer.
Approximate Bayesian Inference with Stein Functional Variational Gradient Descent.
11th International Conference on Learning Representations (ICLR 2023). Kigali, Rwanda, May 01-05, 2023.
URL.
[607]
J. Schuchardt, T. Wollschläger, A. Bojchevski and S. Günnemann.
Localized Randomized Smoothing for Collective Robustness Certification.
11th International Conference on Learning Representations (ICLR 2023). Kigali, Rwanda, May 01-05, 2023.
URL.
[606]
H. Huang, J. Qiu and K. Riedl.
On the global convergence of particle swarm optimization methods.
Applied Mathematics and Optimization 88.2 (May. 2023).
URL.
[605]
K. Rath, D. Rügamer, B. Bischl, U. von Toussaint and C. Albert.
Dependent state space Student-t processes for imputation and data augmentation in plasma diagnostics.
Contributions to Plasma Physics 63.5-6 (May. 2023).
DOI.
[604]
Z. Liu, Y. Ma, M. Schubert, Y. Ouyang, W. Rong and Z. Xiong.
Multimodal Contrastive Transformer for Explainable Recommendation.
IEEE Transactions on Computational Social Systems (May. 2023).
DOI.
[603]
M. Lotfollahi, A. Klimovskaia Susmelj, C. De Donno, L. Hetzel, Y. Ji, I. L. Ibarra, S. R. Srivatsan, M. Naghipourfar, R. M. Daza, B. Martin, J. Shendure, J. L. McFaline-Figueroa, P. Boyeau, F. A. Wolf, N. Yakubova, S. Günnemann, C. Trapnell, D. Lopez-Paz and F. J. Theis.
Predicting cellular responses to complex perturbations in high-throughput screens.
Molecular Systems Biology 19.6 (May. 2023).
DOI.
[602]
H.-H. Chou, H. Rauhut and R. Ward.
Robust implicit regularization via weight normalization.
Preprint at arXiv (May. 2023).
arXiv.
[601]
H. N. Dang, V. Golkov, T. Wimmer, D. Cremers, A. Maier and M. Zaiss.
Joint MR sequence optimization beats pure neural network approaches for spin-echo MRI super-resolution.
Preprint at arXiv (May. 2023).
arXiv.
[600]
T. Hannan, R. Koner, M. Bernhard, S. Shit, B. Menze, V. Tresp, M. Schubert and T. Seidl.
GRAtt-VIS: Gated Residual Attention for Auto Rectifying Video Instance Segmentation.
Preprint at arXiv (May. 2023).
arXiv.
[599]
A. Modarressi, A. Imani, M. Fayyaz and H. Schütze.
RET-LLM: Towards a General Read-Write Memory for Large Language Models.
Preprint at arXiv (May. 2023).
arXiv.
[598]
C. Geldhauser and M. Romito.
Gaussian fluctuations around limit measures of generalized SQG point vortices.
Proceedings in Applied Mathematics and Mechanics 23.1 (May. 2023).
DOI.
[597]
D. Bär, F. Calderon, M. Lawlor, S. Licklederer, M. Totzauer and S. Feuerriegel.
Analyzing Social Media Activities at Bellingcat.
15th ACM Web Science Conference 2023 (WebSci 2023). Austin, TX, USA, Apr 30-May 01, 2023.
DOI.
[596]
L. G. M. Bauer, C. Leiber, C. Böhm and C. Plant.
Extension of the Dip-test Repertoire - Efficient and Differentiable p-value Calculation for Clustering.
SIAM International Conference on Data Mining (SDM 2023). Minneapolis, MN, USA, Apr 27-29, 2023.
DOI.
[595]
E. Dorigatti, B. Schubert, B. Bischl and D. Rügamer.
Frequentist Uncertainty Quantification in Semi-Structured Neural Networks.
26th International Conference on Artificial Intelligence and Statistics (AISTATS 2023). Valencia, Spain, Apr 25-27, 2023.
URL.
[594]
G. Keropyan, D. Strieder and M. Drton.
Rank-Based Causal Discovery for Post-Nonlinear Models.
26th International Conference on Artificial Intelligence and Statistics (AISTATS 2023). Valencia, Spain, Apr 25-27, 2023.
URL.
[593]
C. Luther, G. König and M. Grosse-Wentrup.
Efficient SAGE Estimation via Causal Structure Learning.
26th International Conference on Artificial Intelligence and Statistics (AISTATS 2023). Valencia, Spain, Apr 25-27, 2023.
URL.
[592]
T. Mortier, V. Bengs, E. Hüllermeier, S. Luca and W. Waegeman.
On the Calibration of Probabilistic Classifier Sets.
26th International Conference on Artificial Intelligence and Statistics (AISTATS 2023). Valencia, Spain, Apr 25-27, 2023.
URL.
[591]
F. Chiossi, L. Haliburton, C. Ou, A. Butz and A. Schmidt.
Short-Form Videos Degrade Our Capacity to Retain Intentions: Effect of Context Switching On Prospective Memory.
Conference on Human Factors in Computing Systems (CHI 2023). Hamburg, Germany, Apr 23-28, 2023.
DOI.
[590]
L. Haliburton, N. Bartłomiejczyk, A. Schmidt, P. W. Woźniak and J. Niess.
The Walking Talking Stick: Understanding Automated Note-Taking in Walking Meetings.
Conference on Human Factors in Computing Systems (CHI 2023). Hamburg, Germany, Apr 23-28, 2023.
DOI.
[589]
N. Pröllochs and S. Feuerriegel.
Mechanisms of True and False Rumor Sharing in Social Media: Collective Intelligence or Herd Behavior?.
Conference on Human Factors in Computing Systems (CHI 2023). Hamburg, Germany, Apr 23-28, 2023.
DOI.
[588]
M. Windl, A. Schmidt and S. S. Feger.
Investigating Tangible Privacy-Preserving Mechanisms for Future Smart Homes.
Conference on Human Factors in Computing Systems (CHI 2023). Hamburg, Germany, Apr 23-28, 2023.
DOI.
[587]
M. Windl, V. Winterhalter, A. Schmidt and S. Mayer.
Understanding and Mitigating Technology-Facilitated Privacy Violations in the Physical World.
Conference on Human Factors in Computing Systems (CHI 2023). Hamburg, Germany, Apr 23-28, 2023.
DOI.
[586]
M. Feurer, K. Eggensperger, E. Bergman, F. Pfisterer, B. Bischl and F. Hutter.
Mind the Gap: Measuring Generalization Performance Across Multiple Objectives.
21st International Symposium on Intelligent Data Analysis (IDA 2023). Louvain-la-Neuve, Belgium, Apr 12-14, 2023.
DOI.
[585]
D. Schubert, P. Gupta and M. Wever.
Meta-learning for Automated Selection of Anomaly Detectors for Semi-supervised Datasets.
21st International Symposium on Intelligent Data Analysis (IDA 2023). Louvain-la-Neuve, Belgium, Apr 12-14, 2023.
DOI.
[584]
D. Schalk, B. Bischl and D. Rügamer.
Accelerated Componentwise Gradient Boosting Using Efficient Data Representation and Momentum-Based Optimization.
Journal of Computational and Graphical Statistics 32.2 (Apr. 2023).
DOI.
[583]
S. Dandl, A. Hofheinz, M. Binder, B. Bischl and G. Casalicchio.
counterfactuals: An R Package for Counterfactual Explanation Methods.
Preprint at arXiv (Apr. 2023).
arXiv.
[582]
A. Köksal, T. Schick, A. Korhonen and H. Schütze.
LongForm: Optimizing Instruction Tuning for Long Text Generation with Corpus Extraction.
Preprint at arXiv (Apr. 2023).
arXiv.
[581]
F. Ott, L. Heublein, D. Rügamer, B. Bischl and C. Mutschler.
Fusing Structure from Motion and Simulation-Augmented Pose Regression from Optical Flow for Challenging Indoor Environments.
Preprint at arXiv (Apr. 2023).
arXiv.
[580]
T. Wimmer, V. Golkov, H. N. Dang, M. Zaiss, A. Maier and D. Cremers.
Scale-Equivariant Deep Learning for 3D Data.
Preprint at arXiv (Apr. 2023).
arXiv.
[579]
M. Drton, H. Shi and D. Strieder.
Discussion of “A note on universal inference” by Timmy Tse and Anthony Davison.
Stat 12.1 (Apr. 2023).
DOI.
[578]
T. Tornede, A. Tornede, L. Fehring, L. Gehring, H. Graf, J. Hanselle, F. Mohr and M. Wever.
PyExperimenter: Easily distribute experiments and track results.
The Journal of Open Source Software 8.86 (Apr. 2023).
DOI.
[577]
M. Herrmann, F. Pfisterer and F. Scheipl.
A geometric framework for outlier detection in high-dimensional data.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery e1491 (Apr. 2023).
DOI.
[576]
L. Bothmann and K. Peters.
Fairness von KI – ein Brückenschlag zwischen Philosophie und Maschinellem Lernen.
Grenzen Künstlicher Intelligenz. Munich, Germany, Mar 29-31, 2023.
[575]
L. Weissweiler, T. He, N. Otani, D. R. Mortensen, L. Levin and H. Schütze.
Construction Grammar Provides Unique Insight into Neural Language Models.
Georgetown University Round Table on Linguistics (GURT 2023). Washington D.C., USA, Mar 09-12, 2023.
URL.
[574]
J. Moosbauer, G. Casalicchio, M. Lindauer and B. Bischl.
Improving Accuracy of Interpretability Measures in Hyperparameter Optimization via Bayesian Algorithm Execution.
Workshop on Configuration and Selection of Algorithms (COSEAL 2023). Paris, France, Mar 06-08, 2023.
arXiv.
[573]
L. Zumeta-Olaskoaga, M. Weigert, J. Larruskain, E. Bikandi, J. Setuain, J. Lekue, H. Küchenhoff and D. J. Lee.
Prediction of sports injuries in football: a recurrent time-to-event approach using regularized Cox models.
Advances in Statistical Analysis 107 (Mar. 2023).
DOI.
[572]
P. Heid.
A short note on an adaptive damped Newton method for strongly monotone and Lipschitz continuous operator equations.
Archiv der Mathematik (Mar. 2023).
URL.
[571]
C. Nießl, S. Hoffmann, T. Ullmann and A.-L. Boulesteix.
Explaining the optimistic performance evaluation of newly proposed methods: A cross-design validation experiment.
Biometrical Journal (Mar. 2023).
DOI.
[570]
A. Scagliotti.
Optimal control of ensembles of dynamical systems.
ESAIM - Control, Optimisation and Calculus of Variations 29.22 (Mar. 2023).
DOI.
[569]
S. Klenk, L. Koestler, D. Scaramuzza and D. Cremers.
E-NeRF: Neural Radiance Fields from a Moving Event Camera.
IEEE Robotics and Automation Letters 8.3 (Mar. 2023).
DOI.
[568]
D. S. Fischer, A. C. Schaar and F. J. Theis.
Modeling intercellular communication in tissues using spatial graphs of cell.
Nature Biotechnology 41 (Mar. 2023).
DOI.
[567]
L. Heumos, A. C. Schaar, C. Lance, A. Litinetskaya, F. Drost, L. Zappia, M. D. Lücken, D. C. Strobl, J. Henao, F. Curion, Single-cell Best Practices Consortium, H. B. Schiller and F. J. Theis.
Best practices for single-cell analysis across modalities.
Nature Reviews Genetics 24 (Mar. 2023).
DOI.
[566]
J. Kostin, F. Krahmer and D. Stöger.
How robust is randomized blind deconvolution via nuclear norm minimization against adversarial noise?.
Preprint at arXiv (Mar. 2023).
arXiv.
[565]
B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann, M. Becker, A.-L. Boulesteix, D. Deng and M. Lindauer.
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 13.2 (Mar. 2023).
DOI.
[564]
J. Brandt, E. Schede, B. Haddenhorst, V. Bengs, E. Hüllermeier and K. Tierney.
AC-Band: A Combinatorial Bandit-Based Approach to Algorithm Configuration.
37th Conference on Artificial Intelligence (AAAI 2023). Washington, DC, USA, Feb 07-14, 2023.
DOI.
[563]
D. Frauen, T. Hatt, V. Melnychuk and S. Feuerriegel.
Estimating Average Causal Effects from Patient Trajectories.
37th Conference on Artificial Intelligence (AAAI 2023). Washington, DC, USA, Feb 07-14, 2023.
DOI.
[562]
R. Koner, T. Hannan, S. Shit, S. Sharifzadeh, M. Schubert, T. Seidl and V. Tresp.
InstanceFormer: An Online Video Instance Segmentation Framework.
37th Conference on Artificial Intelligence (AAAI 2023). Washington, DC, USA, Feb 07-14, 2023.
DOI.
GitHub.
[561]
G. König, T. Freiesleben and M. Grosse-Wentrup.
Improvement-focused causal recourse (ICR).
37th Conference on Artificial Intelligence (AAAI 2023). Washington, DC, USA, Feb 07-14, 2023.
DOI.
[560]
D. Rügamer, C. Kolb and N. Klein.
Semi-Structured Distributional Regression.
American Statistician (Feb. 2023).
DOI.
[559]
Q. Khan, I. Sülö, M. Öcal and D. Cremers.
Learning vision based autonomous lateral vehicle control without supervision.
Applied Intelligence 53.16 (Feb. 2023).
DOI.
[558]
G. Heinze, A.-L. Boulesteix, M. Kammer, T. P. Morris, I. R. White and the Simulation Panel of the STRATOS initiative.
Phases of methodological research in biostatistics—Building the evidence base for new methods.
Biometrical Journal (Feb. 2023).
DOI.
[557]
M. Weigert, A. Beyerlein, K. Katz, R. Schulte, W. Hartl and H. Küchenhoff.
Vaccine-Induced or Hybrid Immunity and COVID-19-Associated Mortality During the Omicron Wave.
Deutsches Ärzteblatt International 120.13 (Feb. 2023).
DOI.
[556]
M. Bonafini, M. Fornasier and B. Schmitzer.
Data-driven entropic spatially inhomogeneous evolutionary games.
European Journal of Applied Mathematics 34.1 (Feb. 2023).
DOI.
[555]
I. Elezi, J. Seidenschwarz, L. Wagner, S. Vascon, A. Torcinovich, M. Pelillo and L. Leal-Taixé.
The Group Loss++: A deeper look into group loss for deep metric learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence 45.2 (Feb. 2023).
DOI.
[554]
S. Schallmoser, T. Zueger, M. Kraus, M. Saar-Tsechansky, C. Stettler and S. Feuerriegel.
Machine Learning for Predicting Micro- and Macrovascular Complications in Individuals With Prediabetes or Diabetes: Retrospective Cohort Study.
Journal of Medical Internet Research 25 (Feb. 2023).
DOI.
[553]
V. Tresp, S. Sharifzadeh, H. Li, D. Konopatzki and Y. Ma.
The Tensor Brain: A Unified Theory of Perception, Memory, and Semantic Decoding.
Neural Computing 35.2 (Feb. 2023).
DOI.
[552]
B. Bonnet, C. Cipriani, M. Fornasier and H. Huang.
A measure theoretical approach to the mean-field maximum principle for training NeurODEs.
Nonlinear Analysis 227 (Feb. 2023).
DOI.
[551]
D. Rügamer, P. Baumann, T. Kneib and T. Hothorn.
Probabilistic Time Series Forecasts with Autoregressive Transformation Models.
Statistics and Computing 33.2 (Feb. 2023).
URL.
[550]
D. Schalk, V. Hoffmann, B. Bischl and U. Mansmann.
dsBinVal: Conducting distributed ROC analysis using DataSHIELD.
The Journal of Open Source Software 8.82 (Feb. 2023).
DOI.
[549]
F. Hofherr, L. Koestler, F. Bernard and D. Cremers.
Neural Implicit Representations for Physical Parameter Inference from a Single Video.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2023). Waikoloa, Hawaii, Jan 03-07, 2023.
DOI.
[548]
L. Sang, B. Häfner, X. Zuo and D. Cremers.
High-Quality RGB-D Reconstruction via Multi-View Uncalibrated Photometric Stereo and Gradient-SDF.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2023). Waikoloa, Hawaii, Jan 03-07, 2023.
DOI.
[547]
C. Fiedler, M. Fornasier, T. Klock and M. Rauchensteiner.
Stable recovery of entangled weights: Towards robust identification of deep neural networks from minimal samples.
Applied and Computational Harmonic Analysis 62 (Jan. 2023).
DOI.
[546]
C. Molnar, G. König, B. Bischl and G. Casalicchio.
Model-agnostic feature importance and effects with dependent features: a conditional subgroup approach.
Data Mining and Knowledge Discovery (Jan. 2023).
DOI.
[545]
Z. Ye, B. Haefner, Y. Quéau, T. Möllenhoff and D. Cremers.
A Cutting-Plane Method for Sublabel-Accurate Relaxation of Problems with Product Label Spaces.
International Journal of Computer Vision 131 (Jan. 2023).
DOI.
[544]
D. Rügamer, R. Shen, C. Bukas, L. B. de Andrade e Sousa, D. Thalmeier, N. Klein, C. Kolb, F. Pfisterer, P. Kopper, B. Bischl and C. L. Müller.
deepregression: a Flexible Neural Network Framework for Semi-Structured Deep Distributional Regression.
Journal of Statistical Software (Jan. 2023).
DOI.
[543]
V. Bengs and E. Hüllermeier.
Multi-armed bandits with censored consumption of resources.
Machine Learning 112.1 (Jan. 2023).
DOI.
[542]
A. Farshad, Y. Yeganeh and N. Navab.
Learning to learn in medical applications: A journey through optimization.
Meta-Learning with Medical Imaging and Health Informatics Applications. The MICCAI Society book Series (Jan. 2023).
DOI.
[541]
A. Roy Guha, S. Siddiqui, S. Pölsterl, A. Farshad, N. Navab and C. Wachinger.
Few-shot segmentation of 3D medical images.
Meta-Learning with Medical Imaging and Health Informatics Applications. The MICCAI Society book Series (Jan. 2023).
DOI.
[540]
M. Ploner, A. Buyx, J. Gempt, J. Gjorgjieva, R. Müller, J. Priller, D. Rückert, B. Wolfrum and S. N. Jacob.
Reengineering neurotechnology: placing patients first.
Nature Mental Health 1 (Jan. 2023).
DOI.
[539]
T. Ullmann, S. Peschel, P. Finger, C. L. Müller and A.-L. Boulesteix.
Over-optimism in unsupervised microbiome analysis: Insights from network learning and clustering.
PLOS Computational Biology 19.1 (Jan. 2023).
DOI.
[538]
L. Haliburton, S. Ghebremedhin, R. Welsch, A. Schmidt and Mayer.
Investigating Labeler Bias in Face Annotation for Machine Learning.
Preprint at arXiv (Jan. 2023).
arXiv.
[537]
E. Dorigatti, F. Drost, A. Straub, P. Hilgendorf, K. I. Wagner, B. Bischl, D. H. Busch, K. Schober and B. Schubert.
Predicting T Cell Receptor Functionality against Mutant Epitopes.
Preprint at bioRxiv (2023).
DOI.
[536]
A. Karollus, J. Hingerl, D. Gankin, M. Grosshauser, K. Klemon and J. Gagneur.
Species-aware DNA language models capture regulatory elements and their evolution.
Preprint at bioRxiv (2023).
DOI.
[535]
P. T. da Silva, Y. Zhang, E. Theodorakis, L. D. Martens, V. A. Yépez, V. Pelechano and J. Gagneur.
Cellular energy regulates mRNA translation and degradation in a codon-specific manner.
Preprint at bioRxiv (2023).
DOI.
[534]
I. Ziegler, B. Ma, B. Bischl, E. Dorigatti and B. Schubert.
Proteasomal cleavage prediction: state-of-the-art and future directions.
Preprint at bioRxiv (2023).
DOI.
GitHub.
2022
[533]
P. Mummoju, A. Wolff, M. Perdacher, C. Plant and C. Böhm.
Enhancing k-Means Algorithm with Tensor Processing Unit.
IEEE International Conference on Big Data (IEEE BigData 2022). Osaka, Japan, Dec 17-20, 2022.
DOI.
[532]
J. Goschenhofer, P. Ragupathy, C. Heumann, B. Bischl and M. Aßenmacher.
CC-Top: Constrained Clustering for Dynamic Topic Discovery.
1st Workshop on Ever Evolving NLP (EvoNLP 2022). Abu Dhabi, United Arab Emirates, Dec 07, 2022.
URL.
[531]
S. Legler, T. Janjic, M. H. Shaker and E. Hüllermeier.
Machine learning for estimating parameters of a convective-scale model: A comparison of neural networks and random forests.
32nd Workshop of Computational Intelligence of the VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik (GMA). Berlin, Germany, Dec 01-02, 2022.
PDF.
[530]
R. Foygel Barber, M. Drton, N. Sturma and L. Weihs.
Half-trek criterion for identifiability of latent variable models.
Annals of Statistics 50.6 (Dec. 2022).
DOI.
[529]
M. Ali, M. Berrendorf, C. T. Hoyt, L. Vermue, M. Galkin, S. Sharifzadeh, A. Fischer, V. Tresp and J. Lehmann.
Bringing Light Into the Dark: A Large-scale Evaluation of Knowledge Graph Embedding Models under a Unified Framework.
IEEE Transactions on Pattern Analysis and Machine Intelligence 44.12 (Dec. 2022).
DOI.
GitHub.
[528]
F. Günther, S. Einhauser, D. Peterhoff, S. Wiegrebe, H. H. Niller, S. Beileke, P. Steininger, R. Burkhardt, H. Küchenhoff, O. Gefeller, K. Überla, I. M. Heid and R. Wagner.
Higher Infection Risk among Health Care Workers and Lower Risk among Smokers Persistent across SARS-CoV-2 Waves–Longitudinal Results from the Population-Based TiKoCo Seroprevalence Study.
International Journal of Environmental Research and Public Health 19.24 (Dec. 2022).
DOI.
[527]
C. Fritz, G. De Nicola, F. Günther, D. Rügamer, M. Rave, M. Schneble, A. Bender, M. Weigert, R. Brinks, A. Hoyer, U. Berger, H Küchenhoff and G. Kauermann.
Challenges in Interpreting Epidemiological Surveillance Data – Experiences from Germany.
Journal of Computational and Graphical Statistics 32.3 (Dec. 2022).
DOI.
[526]
F. Keusch, S. Bähr, G.-C. Haas, F. Kreuter, M. Trappmann and S. Eckman.
Non-participation in smartphone data collection using research apps.
Journal of the Royal Statistical Society. Series A (Statistics in Society) 185.2 (Dec. 2022).
DOI.
[525]
M. Brunner, P. Heid, M. Innerberger, A. Miraci, D. Praetorius and J. Streitberger.
Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs.
Preprint at arXiv (Dec. 2022).
arXiv.
[524]
C. Geldhauser, J. Liljegren and P. Nordqvist.
All's well that FID's well? Result quality and metric scores in GAN models for lip-sychronization tasks.
Preprint at arXiv (Dec. 2022).
arXiv.
[523]
H. Huang, J. Qiu and K. Riedl.
Consensus-Based Optimization for Saddle Point Problems.
Preprint at arXiv (Dec. 2022).
arXiv.
[522]
W. Durani, D. Mautz, C. Plant and C. Böhm.
DBHD: Density-based clustering for highly varying density.
22nd IEEE International Conference on Data Mining (ICDM 2022). Orlando, FL, USA, Nov 30-Dec 02, 2022.
DOI.
[521]
S. Gilhuber, P. Jahn, Y. Ma and T. Seidl.
Verips: Verified Pseudo-label Selection for Deep Active Learning.
22nd IEEE International Conference on Data Mining (ICDM 2022). Orlando, FL, USA, Nov 30-Dec 02, 2022.
DOI.
GitHub.
[520]
L. Miklautz, M. Teuffenbach, P. Weber, R. Perjuci, W. Durani, C. Böhm and C. Plant.
Deep Clustering With Consensus Representations.
22nd IEEE International Conference on Data Mining (ICDM 2022). Orlando, FL, USA, Nov 30-Dec 02, 2022.
DOI.
[519]
M. Rezaei, E. Dorigatti, D. Rügamer and B. Bischl.
Learning Statistical Representation with Joint Deep Embedded Clustering.
IEEE International Conference on Data Mining Workshops (ICDMW 2022). Orlando, FL, USA, Nov 30-Dec 02, 2022.
DOI.
[518]
N. Strauss, M. Berrendorf, T. Haider and M. Schubert.
A Comparison of Ambulance Redeployment Systems on Real-World Data.
IEEE International Conference on Data Mining Workshops (ICDMW 2022). Orlando, FL, USA, Nov 30-Dec 02, 2022.
DOI.
GitHub.
[517]
J. Ullerich, M. Windl, A. Bulling and S. Mayer.
ThumbPitch: Enriching Thumb Interaction on Mobile Touchscreens using Deep Learning.
33rd Australian Conference on Human-Computer Interaction (OZCHI 2022). Canberra, NSW, Australia, Nov 29-Dec 02, 2022.
DOI.
[516]
V. Bengs, E. Hüllermeier and W. Waegeman.
Pitfalls of Epistemic Uncertainty Quantification through Loss Minimisation.
36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
PDF.
[515]
A. Blattmann, R. Rombach, K. Oktay and B. Ommer.
Retrieval-Augmented Diffusion Models.
36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
PDF.
[514]
J. Brandt, V. Bengs, B. Haddenhorst and E. Hüllermeier.
Finding optimal arms in non-stochastic combinatorial bandits with semi-bandit feedback and finite budget.
36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
PDF.
[513]
L. Hetzel, S. Boehm, N. Kilbertus, S. Günnemann, M. Lotfollahi and F. J. Theis.
Predicting Cellular Responses to Novel Drug Perturbations at a Single-Cell Resolution.
36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
PDF.
[512]
P. Holl, V. Koltun and N. Thuerey.
Scale-invariant Learning by Physics Inversion.
36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
PDF.
[511]
H. H.-H. Hsu, Y. Shen, C. Tomani and D. Cremers.
What Makes Graph Neural Networks Miscalibrated?.
36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
PDF.
[510]
F. Mujkanovic, S. Geisler, S. Günnemann and A. Bojchevski.
Are Defenses for Graph Neural Networks Robust?.
36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
PDF.
[509]
M. Ozgur Turkoglu, A. Becker, H. A. Gündüz, M. Rezaei, B. Bischl, R. Caye Daudt, S. D'Aronco, J. D. Wegner and K. Schindler.
FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation.
36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
PDF.
[508]
Y. Scholten, J. Schuchardt, S. Geisler, A. Bojchevski and S. Günnemann.
Randomized Message-Interception Smoothing: Gray-box Certificates for Graph Neural Networks.
36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
PDF.
[507]
J. Schuchardt and S. Günnemann.
Invariance-Aware Randomized Smoothing Certificates.
36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
PDF.
[506]
Y. Shen and D. Cremers.
Deep Combinatorial Aggregation.
36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
PDF.
[505]
N. Hurmer, X.-Y. To, M. Binder, H. A. Gündüz, P. C. Münch, R. Mreches, A. C. McHardy, B. Bischl and M. Rezaei.
Transformer Model for Genome Sequence Analysis.
Workshop on Learning Meaningful Representations of Life (LMRL 2022) at the 36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
URL.
[504]
I. Ziegler, B. Ma, E. Nie, B. Bischl, D. Rügamer, B. Schubert and E. Dorigatti.
What cleaves? Is proteasomal cleavage prediction reaching a ceiling?.
Workshop on Learning Meaningful Representations of Life (LMRL 2022) at the 36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
URL.
[503]
H. H.-H. Hsu, Y. Shen and D. Cremers.
A Graph Is More Than Its Nodes: Towards Structured Uncertainty-Aware Learning on Graphs.
Workshop on New Frontiers in Graph Learning at the 36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
URL.
[502]
P. Kaiser, D. Rügamer and C. Kern.
Uncertainty as a key to fair data-driven decision making.
Workshop on Trustworthy and Socially Responsible Machine Learning (TSRML 2022) at the 36th Conference on Neural Information Processing Systems (NeurIPS 2022). New Orleans, LA, USA, Nov 28-Dec 09, 2022.
URL.
[501]
A. Farshad, Y. Yeganeh, H. Dhamo, F. Tombari and N. Navab.
DisPositioNet: Disentangled Pose and Identity in Semantic Image Manipulation.
33rd British Machine Vision Conference (BMVC 2022). London, UK, Nov 21-24, 2022.
URL.
[500]
M. Windl, A. Hiesinger, R. Welsch, A. Schmidt and S. S. Feger.
SaferHome: Interactive Physical and Digital Smart Home Dashboards for Communicating Privacy Assessments to Owners and Bystanders.
ACM Interactive Surfaces and Spaces Conference (ISS 2022). Wellington, New Zealand, Nov 20-23, 2022.
DOI.
[499]
A. Campagner, J. Lienen, E. Hüllermeier and D. Ciucci.
Scikit-Weak: A Python Library for Weakly Supervised Machine Learning.
International Joint Conference on Rough Sets (IJCRS 2022). Suzhou, China, Nov 11-14, 2022.
DOI.
[498]
H. S. Saadi, V. Hangya, T. Eder and A. Fraser.
Comparative Analysis of Cross-lingual Contextualized Word Embeddings.
2nd Workshop on Multi-lingual Representation Learning (MRL 2022) at the Conference on Empirical Methods in Natural Language Processing (EMNLP 2022). Abu Dhabi, United Arab Emirates, Nov 07-11, 2022.
DOI.
[497]
J. Baan, W. Aziz, B. Plank and R. Fernandez.
Stop Measuring Calibration When Humans Disagree.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2022). Abu Dhabi, United Arab Emirates, Nov 07-11, 2022.
URL.
[496]
E. Bassignana, M. Müller-Eberstein, M. Zhang and B. Plank.
Evidence > Intuition: Transferability Estimation for Encoder Selection.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2022). Abu Dhabi, United Arab Emirates, Nov 07-11, 2022.
URL.
[495]
V. Hangya, H. S. Saadi and A. Fraser.
Improving Low-Resource Languages in Pre-Trained Multilingual Language Models.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2022). Abu Dhabi, United Arab Emirates, Nov 07-11, 2022.
DOI.
[494]
A. Imani, S. Severini, M. J. Sabet, F. Yvon and H. Schütze.
Graph-Based Multilingual Label Propagation for Low-Resource Part-of-Speech Tagging.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2022). Abu Dhabi, United Arab Emirates, Nov 07-11, 2022.
URL.
[493]
M. Müller-Eberstein, R. van der Goot and B. Plank.
Spectral Probing.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2022). Abu Dhabi, United Arab Emirates, Nov 07-11, 2022.
URL.
[492]
B. Plank.
The 'Problem' of Human Label Variation: On Ground Truth in Data, Modeling and Evaluation.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2022). Abu Dhabi, United Arab Emirates, Nov 07-11, 2022.
URL.
[491]
L. Weissweiler, V. Hofmann, A. Köksal and H. Schütze.
The better your Syntax, the better your Semantics? Probing Pretrained Language Models for the English Comparative Correlative.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2022). Abu Dhabi, United Arab Emirates, Nov 07-11, 2022.
URL.
[490]
E. Bassignana and B. Plank.
CrossRE: A Cross-Domain Dataset for Relation Extraction.
Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2022). Abu Dhabi, United Arab Emirates, Nov 07-11, 2022.
URL.
[489]
W. Lai, A. Chronopoulou and A. Fraser.
m4 Adapter: Multilingual Multi-Domain Adaptation for Machine Translation with a Meta-Adapter.
Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2022). Abu Dhabi, United Arab Emirates, Nov 07-11, 2022.
DOI.
[488]
D. Ulmer, E. Bassignana, M. Müller-Eberstein, D. Varab, M. Zhang, R. van der Goot, C. Hardmeier and B. Plank.
Experimental Standards for Deep Learning in Natural Language Processing Research.
Findings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2022). Abu Dhabi, United Arab Emirates, Nov 07-11, 2022.
DOI.
[487]
Z. Ding, J. Wu, B. He, Y. Ma, Z. Han and V. Tresp.
Few-Shot Inductive Learning on Temporal Knowledge Graphs using Concept-Aware Information.
4th Conference on Automated Knowledge Base Construction (AKBC 2022). London, UK, Nov 03-05, 2022.
PDF.
[486]
A. Lohrer, J. J. Binder and P. Kröger.
Group Anomaly Detection for Spatio-Temporal Collective Behaviour Scenarios in Smart Cities.
15th International Workshop on Computational Transportation Science (IWCTS 2022) at the 30th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL 2022). Seattle, WA, USA, Nov 01-04, 2022.
DOI.
[485]
L. Rottkamp, N. Strauss and M. Schubert.
Efficient On-Street Parking Sensor Placement.
15th International Workshop on Computational Transportation Science (IWCTS 2022) at the 30th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL 2022). Seattle, WA, USA, Nov 01-04, 2022.
DOI.
[484]
M. Bernhard and M. Schubert.
Robust Object Detection in Remote Sensing Imagery with Noisy and Sparse Geo-Annotations.
30th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL 2022). Seattle, WA, USA, Nov 01-04, 2022.
DOI.
GitHub.
[483]
S. Pölsterl, C. Wachinger, Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative and Japanese Alzheimer's Disease Neuroimaging Initiative Japanese Alzheimer's Disease Neuroimaging Initiative.
Identification of causal effects of neuroanatomy on cognitive decline requires modeling unobserved confounders.
Alzheimer's and Dementia (Nov. 2022).
DOI.
[482]
E. Pretzsch, V. Heinemann, S. Stintzing, A. Bender, S. Chen, J. W. Holch, F. O. Hofmann, H. Ren, F. Küchenhoff, J. Werner and Angele.
EMT-Related Genes Have No Prognostic Relevance in Metastatic Colorectal Cancer as Opposed to Stage II/III: Analysis of the Randomised, Phase III Trial FIRE-3 (AIO KRK 0306; FIRE-3).
Cancers 14.22 (Nov. 2022).
DOI.
[481]
Y. Liu, S. Yan, L. Leal-Taixé, J. Hays and D. Ramanan.
Soft Augmentation for Image Classification.
Preprint at arXiv (Nov. 2022).
arXiv.
[480]
A. Kim, G. Brasó, A. Ošep and L. Leal-Taixé.
PolarMOT: How Far Can Geometric Relations Take us in 3D Multi-object Tracking?.
17th European Conference on Computer Vision (ECCV 2022). Tel Aviv, Israel, Oct 23-27, 2022.
DOI.
[479]
L. Koestler, D. Grittner, M. Moeller, D. Cremers and Z. Lähner.
Intrinsic Neural Fields: Learning Functions on Manifolds.
17th European Conference on Computer Vision (ECCV 2022). Tel Aviv, Israel, Oct 23-27, 2022.
DOI.
[478]
S. Shit, R. Koner, B. Wittmann, J. Paetzold, I. Ezhov, H. Li, J. Pan, S. Sharifzadeh, G. Kaissis, V. Tresp and B. Menze.
Relationformer: A Unified Framework for Image-to-Graph Generation.
17th European Conference on Computer Vision (ECCV 2022). Tel Aviv, Israel, Oct 23-27, 2022.
DOI.
GitHub.
[477]
C. Tomani, D. Cremers and F. Buettner.
Parameterized Temperature Scaling for Boosting the Expressive Power in Post-Hoc Uncertainty Calibration.
17th European Conference on Computer Vision (ECCV 2022). Tel Aviv, Israel, Oct 23-27, 2022.
DOI.
[476]
Q. Zhou, S. Agostinho, A. Ošep and L. Leal-Taixé.
Is Geometry Enough for Matching in Visual Localization?.
17th European Conference on Computer Vision (ECCV 2022). Tel Aviv, Israel, Oct 23-27, 2022.
DOI.
[475]
M. Gladkova, N. Korobov, N. Demmel, A. Ošep, L. Leal-Taixé and D. Cremers.
DirectTracker: 3D Multi-Object Tracking Using Direct Image Alignment and Photometric Bundle Adjustment.
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022). Kyoto, Japan, Oct 23-27, 2022.
DOI.
[474]
R. Rombach, A. Blattmann and B. Ommer.
Text-Guided Synthesis of Artistic Images with Retrieval-Augmented Diffusion Models.
Workshop Vision for Art (VISART VI 2022) at the 17th European Conference on Computer Vision (ECCV 2022). Tel Aviv, Israel, Oct 23-27, 2022.
arXiv.
[473]
D. Das, Q. Khan and D. Cremers.
Ventriloquist-Net: Leveraging Speech Cues for Emotive Talking Head Generation.
IEEE International Conference on Image Processing (ICIP 2022). Bordeaux, France, Oct 16-19, 2022.
DOI.
[472]
C. Zelenka, A. Lohrer, M. Bayer and P. Kröger.
AI4EO Hyperview: A SpectralNet3D and RNNPlus Approach for Sustainable Soil Parameter Estimation on Hyperspectral Image Data.
IEEE International Conference on Image Processing (ICIP 2022). Bordeaux, France, Oct 16-19, 2022.
DOI.
[471]
F. Ott, D. Rügamer, L. Heublein, B. Bischl and C. Mutschler.
Domain Adaptation for Time-Series Classification to Mitigate Covariate Shift.
30th ACM International Conference on Multimedia (MM 2022). Lisbon, Portugal, Oct 10-14, 2022.
DOI.
[470]
L. J. Meier, A. Hein, K. Diepold and A. Buyx.
Clinical Ethics – To Compute, or Not to Compute?.
American Journal of Bioethics 22.12 (Oct. 2022).
DOI.
[469]
M. Kuppler, C. Kern, R. L. Bach and F. Kreuter.
From fair predictions to just decisions? Conceptualizing algorithmic fairness and distributive justice in the context of data-driven decision-making.
Frontiers in Sociology 7 (Oct. 2022).
DOI.
[468]
J. Moosbauer, M. Binder, L. Schneider, F. Pfisterer, M. Becker, M. Lang, L. Kotthoff and B. Bischl.
Automated Benchmark-Driven Design and Explanation of Hyperparameter Optimizers.
IEEE Transactions on Evolutionary Computation 26.6 (Oct. 2022).
DOI.
[467]
A. Balogh, A. Harman and F. Kreuter.
Real-Time Analysis of Predictors of COVID-19 Infection Spread in Countries in the European Union Through a New Tool.
International Journal of Public Health 67 (Oct. 2022).
DOI.
[466]
E. Schede, J. Brandt, A. Tornede, M. Wever, V. Bengs, E. Hüllermeier and K. Tierney.
A Survey of Methods for Automated Algorithm Configuration.
Journal of Artificial Intelligence Research 75 (Oct. 2022).
DOI.
[465]
K. Rath, D. Rügamer, B. Bischl, U. von Toussaint, C. Rea, A. Maris, R. Granetz and C. Albert.
Data augmentation for disruption prediction via robust surrogate models.
Journal of Plasma Physics 88.5 (Oct. 2022).
DOI.
[464]
S. McLennan, A. Meyer, K. Schreyer and A. Buyx.
German medical students´ views regarding artificial intelligence in medicine: A cross-sectional survey.
PLOS Digital Health 1.10 (Oct. 2022).
DOI.
[463]
C. Kern, F. Gerdon, R. L. Bach, F. Keusch and F. Kreuter.
Humans versus machines: Who is perceived to decide fairer? Experimental evidence on attitudes toward automated decision-making.
Patterns 3.10 (Oct. 2022).
DOI.
[462]
S. Dandl, A. Bender and T. Hothorn.
Heterogeneous Treatment Effect Estimation for Observational Data using Model-based Forests.
Preprint at arXiv (Oct. 2022).
arXiv.
[461]
P. Dendorfer, V. Yugay, A. Ošep and L. Leal-Taixé.
Quo Vadis: Is Trajectory Forecasting the Key Towards Long-Term Multi-Object Tracking?.
Preprint at arXiv (Oct. 2022).
arXiv.
[460]
V. Fomenko, I. Elezi, D. Ramanan, L. Leal-Taixé and A. Ošep.
Learning to Discover and Detect Objects.
Preprint at arXiv (Oct. 2022).
arXiv.
[459]
P. Kocsis, P. Súkenı́k, G. Brasó, M. Nießner, L. Leal-Taixé and I. Elezi.
The Unreasonable Effectiveness of Fully-Connected Layers for Low-Data Regimes.
Preprint at arXiv (Oct. 2022).
arXiv.
[458]
I. Obadic, R. Roscher, D. A. Oliveira and X. Zhu.
Exploring Self-Attention for Crop-type Classification Explainability.
Preprint at arXiv (Oct. 2022).
arXiv.
[457]
M. Windl and S. Mayer.
The Skewed Privacy Concerns of Bystanders in Smart Environments.
ACM International Conference on Mobile Human-Computer Interaction (MobileHCI 2022). Vancouver, Canada, Sep 28-Oct 01, 2022.
DOI.
[456]
S. Gilhuber, M. Berrendorf, Y. Ma and T. Seidl.
Accelerating Diversity Sampling for Deep Active Learning By Low-Dimensional Representations.
6th International Workshop on Interactive Adaptive Learning (IAL 2022) co-located with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2022). Grenoble, France, Sep 19-22, 2022.
PDF.
GitHub.
[455]
D. Deng, F. Karl, F. Hutter, B. Bischl and M. Lindauer.
Efficient Automated Deep Learning for Time Series Forecasting.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2022). Grenoble, France, Sep 19-22, 2022.
DOI.
[454]
C. Frey, Y. Ma and M. Schubert.
SEA: Graph Shell Attention in Graph Neural Networks.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2022). Grenoble, France, Sep 19-22, 2022.
DOI.
[453]
D. Rügamer, A. Bender, S. Wiegrebe, D. Racek, B. Bischl, C. L. Müller and C. Stachl.
Factorized Structured Regression for Large-Scale Varying Coefficient Models.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2022). Grenoble, France, Sep 19-22, 2022.
DOI.
[452]
N. Strauß, D. Winkel, M. Berrendorf and M. Schubert.
Reinforcement Learning for Multi-Agent Stochastic Resource Collection.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2022). Grenoble, France, Sep 19-22, 2022.
DOI.
[451]
D. Winkel, N. Strauß, M. Schubert and T. Seidl.
Risk-Aware Reinforcement Learning for Multi-Period Portfolio Selection.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2022). Grenoble, France, Sep 19-22, 2022.
DOI.
[450]
M. Wright and B. Ommer.
ArtFID: Quantitative Evaluation of Neural Style Transfer.
German Conference on Pattern Recognition (DAGM-GCPR 2022). Konstanz, Germany, Sep 19, 2022-22, 2021.
DOI.
GitHub.
[449]
T. Weber, M. Ingrisch, B. Bischl and D. Rügamer.
Implicit Embeddings via GAN Inversion for High Resolution Chest Radiographs.
1st Workshop on Medical Applications with Disentanglements (MAD 2022) at the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). Singapore, Sep 18-22, 2022.
DOI.
[448]
A. Farshad, Y. Yeganeh, P. Gehlbach and N. Navab.
Y-Net: A Spatiospectral Dual-Encoder Network for Medical Image Segmentation.
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). Singapore, Sep 18-22, 2022.
DOI.
[447]
M. Narazani, I. Sarasua, S. Pölsterl, A. Lizarraga, I. Yakushev and C. Wachinger.
Is a PET All You Need? A Multi-modal Study for Alzheimer’s Disease Using 3D CNNs.
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). Singapore, Sep 18-22, 2022.
DOI.
[446]
I. Sarasua, S. Pölsterl and C. Wachinger.
CASHformer: Cognition Aware SHape Transformer for Longitudinal Analysis.
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). Singapore, Sep 18-22, 2022.
DOI.
[445]
Y. Yeganeh, A. Farshad, J. Boschmann, R. Gaus, M. Frantzen and N. Navab.
FedAP: Adaptive Personalization in Federated Learning for Non-IID Data.
3rd Workshop on Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health (DeCaF FAIR 2022) at the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). Singapore, Sep 18-22, 2022.
DOI.
[444]
A. Farshad, A. Makarevich, V. Belagiannis and N. Navab.
MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation.
4th Workshop on Domain Adaptation and Representation Transfer (DART 2022) at the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). Singapore, Sep 18-22, 2022.
DOI.
[443]
P. Engstler, M. Keicher, D. Schinz, K. Mach, A. S. Gersing, S. C. Foreman, S. S. Goller, J. Weissinger, J. Rischewski, A.-S. Dietrich, B. Wiestler, J. S. Kirschke, A. Khakzar and N. Navab.
Interpretable Vertebral Fracture Diagnosis.
Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2022) at the 25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2022). Singapore, Sep 18-22, 2022.
DOI.
[442]
D. Rößle, D. Cremers and T. Schön.
Perceiver Hopfield Pooling for Dynamic Multi-modal and Multi-instance Fusion.
31st International Conference on Artificial Neural Networks (ICANN 2022). Bristol, UK, Sep 06-09, 2022.
DOI.
[441]
E. Hohma, C. Frey, A. Beer and T. Seidl.
SCAR - Spectral Clustering Accelerated and Robustified.
48th International Conference on Very Large Databases (VLDB 2022). Sydney, Australia (and hybrid), Sep 05-09, 2022.
DOI.
GitHub.
[440]
F. Lang, J. W. Grootjen, L. L. Chuang and T. Machulla.
IDeA: A Demonstration of a Mixed Reality System to Support Living with Central Field Loss.
Mensch und Computer (MuC 2022). Darmstadt, Germany, Sep 04-07, 2022.
DOI.
[439]
R. Sonabend, A. Bender and S. Vollmer.
Avoiding C-hacking when evaluating survival distribution predictions with discrimination measures.
Bioinformatics 38.17 (Sep. 2022).
DOI.
[438]
Weiss, S., Hermüller, P. and Westermann, R..
Fast Neural Representations for Direct Volume Rendering.
Computer Graphics Forum 41.6 (Sep. 2022).
DOI.
[437]
G. Brasó, O. Cetintas and L. Leal-Taixé.
Multi-Object Tracking and Segmentation Via Neural Message Passing.
International Journal of Computer Vision 130.12 (Sep. 2022).
DOI.
[436]
C. Fritz, M. Mehrl, P. W. Thurner and G. Kauermann.
All that Glitters is not Gold: Relational Events Models with Spurious Events.
Network Science 11.2 (Sep. 2022).
DOI.
[435]
H. Silber, F. Gerdon, R. Bach, C. Kern, F. Keusch and F. Kreuter.
A Pre-registered Vignette Experiment on Determinants of Health Data Sharing Behavior: Willingness to Donate Sensor Data, Medical Records, and Biomarkers.
Politics and the Life Sciences 41.2 (Sep. 2022).
DOI.
[434]
E. Dorigatti, B. Bischl and B. Schubert.
Improved proteasomal cleavage prediction with positive-unlabeled learning.
Preprint at arXiv (Sep. 2022).
arXiv.
[433]
E. Dorigatti, J. Schweisthal, B. Bischl and M. Rezaei.
Robust and Efficient Imbalanced Positive-Unlabeled Learning with Self-supervision.
Preprint at arXiv (Sep. 2022).
arXiv.
[432]
S.-F. Zheng, JE. Nam, E. Dorigatti, B. Bischl, S. Azizi and M. Rezaei.
Joint Debiased Representation and Image Clustering Learning with Self-Supervision.
Preprint at arXiv (Sep. 2022).
arXiv.
[431]
M. Fornasier, H. Huang, L. Pareschi and P. Sünnen.
Anisotropic Diffusion in Consensus-Based Optimization on the Sphere.
SIAM Journal on Optimization 32.3 (Sep. 2022).
DOI.
[430]
F. Ott, D. Rügamer, L. Heublein, B. Bischl and C. Mutschler.
Representation Learning for Tablet and Paper Domain Adaptation in favor of Online Handwriting Recognition.
7th International Workshop on Multimodal pattern recognition of social signals in human computer interaction (MPRSS 2022) at the 26th International Conference on Pattern Recognition (ICPR 2022). Montreal, Canada, Aug 21-25, 2022.
arXiv.
[429]
C. Leiber, L. G. M. Bauer, M. Neumayr, C. Plant and C. Böhm.
The DipEncoder: Enforcing Multimodality in Autoencoders.
28th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2022). Washington, DC, USA, Aug 14-18, 2022.
DOI.
[428]
E. Hüllermeier, S. Destercke and M. H. Shaker.
Quantification of Credal Uncertainty in Machine Learning: A Critical Analysis and Empirical Comparison.
38th Conference on Uncertainty in Artificial Intelligence (UAI 2022). Eindhoven, Netherlands, Aug 02-04, 2022.
URL.
[427]
T. Mortier, E. Hüllermeier, K. Dembczynski and W. Waegeman.
Set-valued prediction in hierarchical classification with constrained representation complexity.
38th Conference on Uncertainty in Artificial Intelligence (UAI 2022). Eindhoven, Netherlands, Aug 02-04, 2022.
URL.
[426]
U. Berger, C. Fritz and G. Kauermann.
Reihentestungen an Schulen können die Dunkelziffer von COVID-19 Infektionen unter Schülern signifikant senken.
Das Gesundheitswesen 84.06 (Aug. 2022).
DOI.
[425]
M. van Smeden, G. Heinze, B. Van Calster, F. W. Asselbergs, P. E. Vardas, N. Bruining, P. de Jaegere, J. H. Moore, S. Denaxas, A.-L. Boulesteix and K. G. M. Moons.
Critical appraisal of artificial intelligence-based prediction models for cardiovascular disease.
European Heart Journal 43.31 (Aug. 2022).
DOI.
[424]
M. Lotfollahi, M. Naghipourfar, M. D. Luecken, M. Khajavi, M. Büttner, M. Wagenstetter, Ž. Avsec, A. Gayoso, N. Yosef, M. Interlandi, S. Rybakov, A. V. Misharin and F. J. Theis.
Mapping single-cell data to reference atlases by transfer learning.
Nature Biotechnology 40 (Aug. 2022).
DOI.
[423]
Z. Ding, R. Qi, Z. Li, B. He, J. Wu, Y. Ma, Z. Meng, Z. Han and V. Tresp.
Forecasting Question Answering over Temporal Knowledge Graphs.
Preprint at arXiv (Aug. 2022).
arXiv.
[422]
C. Frey and M. Schubert.
V-Coder: Adaptive AutoEncoder for Semantic Disclosure in Knowledge Graphs.
Preprint at arXiv (Aug. 2022).
arXiv.
[421]
F. Ott, N. L. Raichur, D. Rügamer, T. Feigl, H. Neumann, B. Bischl and C. Mutschler.
Benchmarking Visual-Inertial Deep Multimodal Fusion for Relative Pose Regression and Odometry-aided Absolute Pose Regression.
Preprint at arXiv (Aug. 2022).
arXiv.
[420]
P. Schiele, C. Berninger and D. David.
ARMA Cell: A Modular and Effective Approach for Neural Autoregressive Modeling.
Preprint at arXiv (Aug. 2022).
arXiv.
[419]
L. Schneider, L. Schäpermeier, R. P. Prager, B. Bischl, H. Trautmann and P. Kerschke.
HPO X ELA: Investigating Hyperparameter Optimization Landscapes by Means of Exploratory Landscape Analysis.
Preprint at arXiv (Aug. 2022).
arXiv.
[418]
A. S. Becker-Pennrich, M. M. Mandl, C. Rieder, D. J. Hoechter, K. Dietz, B. P. Geisler, A.-L- Boulesteix, R. Tomasi and L. C. Hinske.
Comparing supervised machine learning algorithms for the prediction of partial arterial pressure of oxygen during craniotomy.
Preprint at medRxiv (Aug. 2022).
DOI.
[417]
M. Schneble and G. Kauermann.
Estimation of Latent Network Flows in Bike-Sharing Systems.
Statistical Modelling 22.2 (Aug. 2022).
DOI.
[416]
C. Fritz, G. De Nicola, M. Rave, M. Weigert, Y. Khazaei, U. Berger, H. Küchenhoff and G. Kauermann.
Statistical modelling of COVID-19 data: Putting generalized additive models to work.
Statistical Modelling 24.4 (Aug. 2022).
DOI.
[415]
F. Pfisterer, L. Schneider, Moosbauer, M. Binder and B. Bischl.
YAHPO Gym - Design Criteria and a new Multifidelity Benchmark for Hyperparameter Optimization.
1st International Conference on Automated Machine Learning (AutoML 2022) co-located with the 39th International Conference on Machine Learning (ICML 2022). Baltimore, MD, USA, Jul 25-27, 2022.
URL.
GitHub.
[414]
L. Schneider, F. Pfisterer, P. Kent, J. Branke, B. Bischl and J. Thomas.
Tackling neural architecture search with quality diversity optimization.
1st International Conference on Automated Machine Learning (AutoML 2022) co-located with the 39th International Conference on Machine Learning (ICML 2022). Baltimore, MD, USA, Jul 25-27, 2022.
URL.
[413]
E. Schede, J. Brandt, A. Tornede, M. Wever, V. Bengs, E. Hüllermeier and K. Tierney.
A Survey of Methods for Automated Algorithm Configuration.
31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI-ECAI 2022). Vienna, Austria, Jul 23-29, 2022. Extended Abstract.
DOI.
[412]
M. Ali, M. Berrendorf, M. Galkin, V. Thost, T. Ma, V. Tresp and J. Lehmann.
Improving Inductive Link Prediction Using Hyper-Relational Facts (Extended Abstract).
Best paper track at the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI-ECAI 2022). Vienna, Austria, Jul 23-29, 2022.
DOI.
[411]
A. Klaß, S. M. Lorenz, M. W. Lauer-Schmaltz, D. Rügamer, B. Bischl, C. Mutschler and F. Ott.
Uncertainty-aware Evaluation of Time-Series Classification for Online Handwriting Recognition with Domain Shift.
Workshop on Spatio-Temporal Reasoning and Learning (STRL 2022) at the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI-ECAI 2022). Vienna, Austria, Jul 23-29, 2022.
URL.
[410]
A. Hein, L. J. Meier, A. Buyx and K. Diepold.
A Fuzzy-Cognitive-Maps Approach to Decision-Making in Medical Ethics.
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2022). Padua, Italy, Jul 18-23, 2022.
DOI.
[409]
T. Liu, Y. Liu, M. Hildebrandt, M. Joblin, H. Li and V. Tresp.
On Calibration of Graph Neural Networks for Node Classification.
International Joint Conference on Neural Networks (IJCNN 2022). Padua, Italy, Jul 18-23, 2022.
DOI.
[408]
Y. Li, A. Khakzar, Y. Zhang, M. Sanisoglu, S. T. Kim, M. Rezaei, B. Bischl and N. Navab.
Analyzing the Effects of Handling Data Imbalance on Learned Features from Medical Images by Looking Into the Models.
2nd Workshop on Interpretable Machine Learning in Healthcare (IMLH 2022) at the the 39th International Conference on Machine Learning (ICML 2022). Baltimore, MD, USA, Jul 17-23, 2022.
arXiv.
[407]
V. Bengs, A. Saha and E. Hüllermeier.
Stochastic Contextual Dueling Bandits under Linear Stochastic Transitivity Models.
39th International Conference on Machine Learning (ICML 2022). Baltimore, MD, USA, Jul 17-23, 2022.
URL.
[406]
L. Hang, Q. Khan, V. Tresp and D. Cremers.
Biologically Inspired Neural Path Finding.
15th International Conference on Brain Informatics (BI 2022). Padova, Italy, Jul 15-15, 2022.
DOI.
[405]
A. Maronikolakis, P. Baader and H. Schütze.
Analyzing Hate Speech Data along Racial, Gender and Intersectional Axes.
4th Workshop on Gender Bias in Natural Language Processing (GeBNLP 2022). Seattle, WA, USA, Jul 15, 2022.
DOI.
[404]
S. Yuan, A. Maronikolakis and H. Schütze.
Separating Hate Speech and Offensive Language Classes via Adversarial Debiasing.
6th Workshop on Online Abuse and Harms (WOAH 2022). Seattle, WA, USA, Jul 14, 2022.
DOI.
[403]
S. Dandl, F. Pfisterer and B. Bischl.
Multi-Objective Counterfactual Fairness.
Genetic and Evolutionary Computation Conference (GECCO 2022). Boston, MA, USA, Jul 09-13, 2022.
DOI.
[402]
L. Schneider, F. Pfisterer, J. Thomas and B. Bischl.
A Collection of Quality Diversity Optimization Problems Derived from Hyperparameter Optimization of Machine Learning Models.
Genetic and Evolutionary Computation Conference (GECCO 2022). Boston, MA, USA, Jul 09-13, 2022.
DOI.
[401]
A. Fiske, S. McLennan and A. Buyx.
Qualitative Evidence for Concern: Digital Health Technologies and the COVID-19 Pandemic.
AJOB Neuroscience 13.3 (Jul. 2022).
DOI.
[400]
R. Hornung and A.-L. Boulesteix.
Interaction Forests: Identifying and exploiting interpretable quantitative and qualitative interaction effects.
Computational Statistics and Data Analysis 171.107460 (Jul. 2022).
DOI.
[399]
A. Caelles, T. Meinhardt, G. Brasó and L. Leal-Taixé.
DeVIS: Making Deformable Transformers Work for Video Instance Segmentation.
Preprint at arXiv (Jul. 2022).
arXiv.
[398]
Y. Yeganeh, A. Farshad and N. Navab.
Shape-Aware Masking for Inpainting in Medical Imaging.
Preprint at arXiv (Jul. 2022).
arXiv.
[397]
Z. Liu, Y. Ma, M. Schubert, Y. Ouyang and Z. Xiong.
Multi-Modal Contrastive Pre-training for Recommendation.
ACM International Conference on Multimedia Retrieval (ICMR 2022). Newark, NJ, USA, Jun 27-30, 2022.
DOI.
[396]
S. Severini, A. Imani, P. Dufter and H. Schütze.
Towards a Broad Coverage Named Entity Resource: A Data-Efficient Approach for Many Diverse Languages.
13th International Conference on Language Resources and Evaluation (LREC 2022). Marseille, France, Jun 21-23, 2022.
URL.
[395]
S. Severini, V. Hangya, M. J. Sabet, A. Fraser and H. Schütze.
Don't Forget Cheap Training Signals Before Building Unsupervised Bilingual Word Embeddings.
15th Workshop on Building and Using Comparable Corpora (BUCC 2022) at the 13th International Conference on Language Resources and Evaluation (LREC 2022). Marseille, France, Jun 21-23, 2022.
URL.
[394]
F. Bongratz, A.-M. Rickmann, S. Pölsterl and C. Wachinger.
Vox2cortex: fast explicit reconstruction of cortical surfaces from 3D MRI scans with geometric deep neural networks.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
[393]
C. Diller, T. Funkhouser and A. Dai.
Forecasting characteristic 3D poses of human actions.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
[392]
M. Eisenberger, A. Toker, L. Leal-Taixé, F. Bernard and D. Cremers.
A Unified Framework for Implicit Sinkhorn Differentiation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
[391]
I. Elezi, Z. Yu, A. Anandkumar, L. Leal-Taixé and J. M. Alvarez.
Not All Labels Are Equal: Rationalizing The Labeling Costs for Training Object Detection.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
[390]
P. Grassal, M. Prinzler, T. Leistner, C. Rother, M. Nießner and J. Thies.
Neural Head Avatars from Monocular RGB Videos.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
[389]
A. Khakzar, P. Khorsandi, R. Nobahari and N. Navab.
Do Explanations Explain? Model Knows Best.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
[388]
M. Kolmet, Q. Zhou, A. Ošep and L. Leal-Taixé.
Text2Pos: Text-to-Point-Cloud Cross-Modal Localization.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
[387]
Y. Liu, I. E. Zulfikar, J. Luiten, A. Dave, D. Ramanan, B. Leibe, A. Ošep and L. Leal-Taixé.
Opening up Open World Tracking.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
[386]
T. Meinhardt, A. Kirillov, L. Leal-Taixé and C. Feichtenhofer.
Trackformer: Multi-object tracking with transformers.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
[385]
D. Muhle, L. Koestler, N. Demmel, F. Bernard and D. Cremers.
The Probabilistic Normal Epipolar Constraint for Frame-To-Frame Rotation Optimization under Uncertain Feature Positions.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
[384]
N. Peri, J. Luiten, M. Li, A. Ošep, L. Leal-Taixé and D. Ramanan.
Forecasting from LiDAR via Future Object Detection.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
[383]
P. Roetzer, P. Swoboda, D. Cremers and F. Bernard.
A Scalable Combinatorial Solver for Elastic Geometrically Consistent 3D Shape Matching.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
GitHub.
[382]
R. Rombach, A. Blattmann, D. Lorenz, P. Esser and B. Ommer.
High-Resolution Image Synthesis with Latent Diffusion Models.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
GitHub.
[381]
C. Sommer, L. Sang, D. Schubert and D. Cremers.
Gradient-SDF: A Semi-Implicit Surface Representation for 3D Reconstruction.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
[380]
A. Toker, L. Kondmann, M. Weber, M. Eisenberger, A. Camero, J. Hu, A. P. Hoderlein, Ç. Şenaras, T. Davis, D. Cremers, G. Marchisio, X. Zhu and L. Leal-Taixé.
DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, LA, USA, Jun 19-24, 2022.
DOI.
[379]
V. Steinborn, P. Dufter, H. Jabbar and H. Schütze.
An Information-Theoretic Approach and Dataset for Probing Gender Stereotypes in Multilingual Masked Language Models.
Findings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2022). Seattle, WA, USA, Jun 10-15, 2022.
DOI.
[378]
M. Zhao, F. Mi, Y. Wang, M. Li, X. Jiang, Q. Liu and H. Schütze.
LMTurk: Few-Shot Learners as Crowdsourcing Workers in a Language-Model-as-a-Service Framework.
Findings of the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2022). Seattle, WA, USA, Jun 10-15, 2022.
DOI.
[377]
F. Müller, Q. Khan and D. Cremers.
Lateral Ego-Vehicle Control Without Supervision Using Point Clouds.
3rd International Conference on Pattern Recognition and Artificial Intelligence (ICPRAI 2022). Paris, France, Jun 01-03, 2022.
DOI.
[376]
M. Schneble and G. Kauermann.
Intensity Estimation on Geometric Networks with Penalized Splines.
Annals of Applied Statistics 16.2 (Jun. 2022).
DOI.
[375]
G. Beaudry, O. Drouin, J. Gravel, A. Smyrnova, A. Bender, M. Orri, M.-C. Geoffroy and N. .
A comparative analysis of pediatric mental health-related emergency department utilization in Montréal, Canada, before and during the COVID-19 pandemic.
Annals of General Psychiatry 21.17 (Jun. 2022).
DOI.
[374]
Q. Au, J. Herbinger, C. Stachl, B. Bischl and G. Casalicchio.
Grouped Feature Importance and Combined Features Effect Plot.
Data Mining and Knowledge Discovery 36 (Jun. 2022).
DOI.
[373]
M. Mittermeier, M. Weigert, D. Rügamer, H. Küchenhoff and R. Ludwig.
A deep learning based classification of atmospheric circulation types over Europe: projection of future changes in a CMIP6 large ensemble.
Environmental Research Letters 17.8 (Jun. 2022).
DOI.
[372]
S. Dandl, T. Hothorn, H. Seibold, E. Sverdrup, S. Wager and A. Zeileis.
What Makes Forest-Based Heterogeneous Treatment Effect Estimators Work?.
Preprint at arXiv (Jun. 2022).
arXiv.
[371]
T. Freiesleben, G. König, C. Molnar and A. Tejero-Cantero.
Scientific inference with interpretable machine learning: Analyzing models to learn about real-world phenomena.
Preprint at arXiv (Jun. 2022).
arXiv.
[370]
J. Moosbauer, G. Casalicchio, M. Lindauer and B. Bischl.
Enhancing Explainability of Hyperparameter Optimization via Bayesian Algorithm Execution.
Preprint at arXiv (Jun. 2022).
arXiv.
[369]
Z. Nurlanov, D. Cremers and F. Bernard.
Efficient and Flexible Sublabel-Accurate Energy Minimization.
Preprint at arXiv (Jun. 2022).
arXiv.
[368]
H. Silber, F. Gerdon, R. Bach, C. Kern, F. Keusch and F. Kreuter.
Dataset and Codebook for: 'A Pre-registered Vignette Experiment on Determinants of Health Data Sharing Behavior: Willingness to Donate Sensor Data, Medical Records, and Biomarkers'.
PsychArchives (Jun. 2022).
DOI.
[367]
S. Kevork and G. Kauermann.
Bipartite Exponential Random Graph Models with Nodal Random Effects.
Social Networks 70 (Jun. 2022).
DOI.
[366]
L. Stumberg and D. Cremers.
DM-VIO: Delayed Marginalization Visual-Inertial Odometry.
IEEE International Conference on Robotics and Automation (ICRA 2022). Philadelphia, PA, USA, May 23-27, 2022.
DOI.
[365]
L. Weissweiler, V. Hofmann, M. Sabet and H. Schütze.
CaMEL: Case Marker Extraction without Labels.
60th Annual Meeting of the Association for Computational Linguistics (ACL 2022). Dublin, Ireland, May 22-27, 2022.
DOI.
[364]
G. Fu, Z. Meng, Y. Ma, Z. Han, Z. Ding, M. Schubert and R. Wattenhofer.
TempCaps: A Capsule Network-based Embedding Model for Temporal Knowledge Graph Completion.
6th ACL Workshop on Structured Prediction for NLP (SPNLP 2022) at the 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022). Dublin, Ireland, May 22-27, 2022.
DOI.
[363]
A. Maronikolakis, A. Wisiorek, L. Nann, H. Jabbar, S. Udupa and H. Schütze.
Listening to Affected Communities to Define Extreme Speech: Dataset and Experiments.
Findings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL 2022). Dublin, Ireland, May 22-27, 2022.
DOI.
[362]
P. Kopper, S. Wiegrebe, B. Bischl, A. Bender and D. Rügamer.
DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex Hazard Structures in Survival Analysis.
26th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2022). Chengdu, China, May 16-19, 2022.
DOI.
[361]
F. Gerdon, R. L. Bach, C. Kern and F. Kreuter.
Social impacts of algorithmic decision-making: A research agenda for the social sciences.
Big Data and Society 9.1 (May. 2022).
DOI.
[360]
V. Gangadharan, H. Zheng, F. J. Taberner, J. Landry, T. A. Nees, J. Pistolic, N. Agarwal, D. Männich, V. Benes, M. Helmstaedter, B. Ommer, S. G. Lechner, T. Kuner and R. Kuner.
Neuropathic pain caused by miswiring and abnormal end organ targeting.
Nature 606 (May. 2022).
URL.
[359]
L. Bothmann, K. Peters and B. Bischl.
What Is Fairness? Implications For FairML.
Preprint at arXiv (May. 2022).
arXiv.
[358]
A. Fernández-Fontelo, F. Henninger, P. J. Kieslich, F. Kreuter and S. Greven.
Classification ensembles for multivariate functional data with application to mouse movements in web surveys.
Preprint at arXiv (May. 2022).
arXiv.
[357]
M. Fromm, M. Berrendorf, J. Reiml, I. Mayerhofer, S. Bhargava, E. Faerman and T. Seidl.
Towards a Holistic View on Argument Quality Prediction.
Preprint at arXiv (May. 2022).
arXiv.
[356]
D. Rügamer.
Additive Higher-Order Factorization Machines.
Preprint at arXiv (May. 2022).
arXiv.
[355]
M. Schleiss, F. Rouatbi and D. Cremers.
VPAIR--Aerial Visual Place Recognition and Localization in Large-scale Outdoor Environments.
Preprint at arXiv (May. 2022).
arXiv.
[354]
C. Tomani and D. Cremers.
Challenger: Training with Attribution Maps.
Preprint at arXiv (May. 2022).
arXiv.
[353]
A. Bauer, M. Weigert and H. Jalal.
APCtools: Descriptive and Model-based Age-Period-Cohort Analysis.
The Journal of Open Source Software 7.73 (May. 2022).
DOI.
[352]
T. Ullmann, C. Hennig and A.-L. Boulesteix.
Validation of cluster analysis results on validation data: A systematic framework.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 12.3 (May. 2022).
DOI.
[351]
M. Windl, S. S. Feger, L. Zijlstra, A. Schmidt and P. W. Wozniak.
‘It Is Not Always Discovery Time’: Four Pragmatic Approaches in Designing AI Systems.
Conference on Human Factors in Computing Systems (CHI 2022). New Orleans, LA, USA, Apr 30-May 05, 2022.
DOI.
[350]
M. Windl, N. Henze, A. Schmidt and S. S. Feger.
Automating Contextual Privacy Policies: Design and Evaluation of a Production Tool for Digital Consumer Privacy Awareness.
Conference on Human Factors in Computing Systems (CHI 2022). New Orleans, LA, USA, Apr 30-May 05, 2022.
DOI.
[349]
C. Leiber, D. Mautz, C. Plant and C. Böhm.
Automatic Parameter Selection for Non-Redundant Clustering.
SIAM International Conference on Data Mining (SDM 2022). Virtual, Apr 28-30, 2022.
DOI.
[348]
D. Alivanistos, M. Berrendorf, M. Cochez and M. Galkin.
Query Embedding on Hyper-Relational Knowledge Graphs.
10th International Conference on Learning Representations (ICLR 2022). Virtual, Apr 25-29, 2022.
URL.
GitHub.
[347]
M. Galkin, M. Berrendorf and C. T. Hoyt.
An Open Challenge for Inductive Link Prediction on Knowledge Graphs.
Workshop on Graph Learning Benchmarks (GLB 2022) at the International World Wide Web Conference (WWW 2022). Virtual, Apr 22-29, 2022.
arXiv.
GitHub.
[346]
C. T. Hoyt, M. Berrendorf, M. Gaklin, V. Tresp and B. M. Gyori.
A Unified Framework for Rank-based Evaluation Metrics for Link Prediction in Knowledge Graphs.
Workshop on Graph Learning Benchmarks (GLB 2022) at the International World Wide Web Conference (WWW 2022). Virtual, Apr 22-29, 2022.
arXiv.
[345]
M. Fornasier, T. Klock and K. Riedl.
Convergence of Anisotropic Consensus-Based Optimization in Mean-Field Law.
25th European Conference on the Applications of Evolutionary Computation (EvoApplications 2022), Held as Part of EvoStar 2022. Madrid, Spain, Apr 20-22, 2022.
DOI.
[344]
A. Markham, R. Das and M. Grosse-Wentrup.
A Distance Covariance-based Kernel for Nonlinear Causal Clustering in Heterogeneous Populations.
1st Conference on Causal Learning and Reasoning (CLeaR 2022). Eureka, CA, USA, Apr 11-13, 2022.
PDF.
[343]
J. Lane, B. Kim, F. Kreuter and A. Nunez.
The Value of Science: Special Theme.
Harvard Data Science Review 4.2 (Apr. 2022).
URL.
[342]
H. Sun, F. G. Conrad and F. Kreuter.
The Carryover Effects of Preceding Interviewer–Respondent Interaction on Responses in Audio Computer-Assisted Self-Interviewing (ACASI).
Journal of Survey Statistics and Methodology 10.2 (Apr. 2022).
DOI.
[341]
C. Brunner, A. Duensing, C. Schröder, M. Mittermair, V. Golkov, M. Pollanka, D. Cremers and R. Kienberger.
Deep Learning in Attosecond Metrology.
Optics Express 30.9 (Apr. 2022). Editor's Pick.
DOI.
[340]
A. Saroha, M. Eisenberger, T. Yenamandra and D. Cremers.
Implicit Shape Completion via Adversarial Shape Priors.
Preprint at arXiv (Apr. 2022).
arXiv.
[339]
J. Herbinger, B. Bischl and G. Casalicchio.
REPID: Regional Effect Plots with implicit Interaction Detection.
25th International Conference on Artificial Intelligence and Statistics (AISTATS 2022). Virtual, Mar 28-30, 2022.
URL.
[338]
S. Malich, S. Bähr, G. C. Haas, F. Keusch, F. Kreuter and M. Trappmann.
Methodische Herausforderungen bei der Aufbereitung und Auswertung von Smartphone-Daten zur Messung sozialer Interaktion.
Frühjahrstagung 2022 der Sektion „Methoden der empirischen Sozialforschung“ der Deutschen Gesellschaft für Soziologie (DGS): Potentiale und Herausforderungen von digitalen Verhaltensdaten in der empirischen Sozialforschung. Virtual, Mar 25, 2022.
PDF.
[337]
T. Ullmann, A. Beer, M. Hünemörder, T. Seidl and A.-L. Boulesteix.
Over-optimistic evaluation and reporting of novel cluster algorithms: An illustrative study.
Advances in Data Analysis and Classification 17 (Mar. 2022).
DOI.
[336]
V. Bauer, D. Harhoff and G. Kauermann.
A smooth dynamic network model for patent collaboration data.
Advances in Statistical Analysis 106 (Mar. 2022).
DOI.
[335]
F. Pargent, F. Pfisterer, J. Thomas and B. Bischl.
Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features.
Computational Statistics 37 (Mar. 2022).
DOI.
[334]
D. Strieder and M. Drton.
On the choice of the splitting ratio for the split likelihood ratio test.
Electronic Journal of Statistics 16.2 (Mar. 2022).
DOI.
[333]
K. E. Riehm, E. Badillo Goicoechea, F. M. Wang, E. Kim, L. R. Aldridge, C. P. Lupton-Smith, R. Presskreischer, T. H. Chang, S. LaRocca, F. Kreuter and E. A. Stuart.
Association of Non-Pharmaceutical Interventions to Reduce the Spread of SARS-CoV-2 With Anxiety and Depressive Symptoms: A Multi-National Study of 43 Countries.
International Journal of Public Health 67 (Mar. 2022).
DOI.
[332]
F. Henninger, P. J. Kieslich, A. Fernández-Fontelo, S. Greven and F. Kreuter.
Privacy attitudes toward mouse-tracking paradata collection.
Preprint at SocArXiv (Mar. 2022).
DOI.
[331]
Q. Cheng, N. Zeller and D. Cremers.
Vision-based Large-scale 3D Semantic Mapping for Autonomous Driving Applications.
Preprint at arXiv (Mar. 2022).
arXiv.
[330]
M. Keicher, K. Mullakaeva, T. Czempiel, K. Mach, A. Khakzar and N. Navab.
Few-shot Structured Radiology Report Generation Using Natural Language Prompts.
Preprint at arXiv (Mar. 2022).
arXiv.
[329]
D. Schalk, V. S. Hoffmann, B. Bischl and U. Mansmann.
Distributed non-disclosive validation of predictive models by a modified ROC-GLM.
Preprint at arXiv (Mar. 2022).
arXiv.
[328]
C. Fritz, E. Dorigatti and D. Rügamer.
Combining Graph Neural Networks and Spatio-temporal Disease Models to Predict COVID-19 Cases in Germany.
Scientific Reports 12.3930 (Mar. 2022).
DOI.
[327]
C. Nießl, M. Herrmann, C. Wiedemann, G. Casalicchio and A.-L. Boulesteix.
Over-optimism in benchmark studies and the multiplicity of design and analysis options when interpreting their results.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 12.2 (Mar. 2022).
DOI.
[326]
Y. Liu, Y. Ma, M. Hildebrandt, M. Joblin and V. Tresp.
TLogic: Temporal logical rules for explainable link forecasting on temporal knowledge graphs.
36th Conference on Artificial Intelligence (AAAI 2022). Virtual, Feb 22-Mar 01, 2022.
DOI.
[325]
S. Sharifzadeh, S. M. Baharlou, M. Schmitt, H. Schütze and V. Tresp.
Improving Scene Graph Classification by Exploiting Knowledge from Texts.
36th Conference on Artificial Intelligence (AAAI 2022). Virtual, Feb 22-Mar 01, 2022.
DOI.
[324]
Z. Ye, T. Yenamandra, F. Bernard and D. Cremers.
Joint Deep Multi-Graph Matching and 3D Geometry Learning from Inhomogeneous 2D Image Collections.
36th Conference on Artificial Intelligence (AAAI 2022). Virtual, Feb 22-Mar 01, 2022.
DOI.
[323]
C. D. Nordeck, K. E. Riehm, E. J. Smail, C. Holingue, J. C. Kane, R. M. Johnson, C. B. Veldhuis, L. G. Kalb, E. A. Stuart, F. Kreuter and J. Thrul.
Changes in drinking days among United States adults during the COVID-19 pandemic.
Addiction 117.2 (Feb. 2022).
DOI.
[322]
G. Palla, H. Spitzer, M. Klein, D. Fischer, A. C. Schaar, L. B. Kuemmerle, S. Rybakov, I. L. Ibarra, O. Holmberg, I. Virshup, M. Lotfollahi, S. Richter and F. J. Theis.
Squidpy: a scalable framework for spatial omics analysis.
Nature Methods 19 (Feb. 2022).
DOI.
[321]
T. Hannan, R. Koner, J. Kobold and M. Schubert.
Box Supervised Video Segmentation Proposal Network.
Preprint at arXiv (Feb. 2022).
arXiv.
[320]
A. Scagliotti and P. Colli Franzone.
Accelerated subgradient methods.
Preprint at arXiv (Feb. 2022).
arXiv.
[319]
S. Bähr, G.-C. Haas, F. Keusch, F. Kreuter and M. Trappmann.
Missing Data and Other Measurement Quality Issues in Mobile Geolocation Sensor Data.
Social Science Computer Review 40.1 (Feb. 2022).
DOI.
[318]
G. De Nicola, B. Sischka and G. Kauermann.
Mixture Models and Networks: The Stochastic Block Model.
Statistical Modelling 22.1-2 (Feb. 2022).
DOI.
[317]
F. Ott, D. Rügamer, L. Heublein, B. Bischl and C. Mutschler.
Joint Classification and Trajectory Regression of Online Handwriting Using a Multi-Task Learning Approach.
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2022). Waikoloa, Hawaii, Jan 04-08, 2022.
DOI.
[316]
M. Fromm.
Machine learning driven argument mining.
.
DOI.
[315]
M. Herrmann.
Towards more reliable machine learning: conceptual insights and practical approaches for unsupervised manifold learning and supervised benchmark studies.
.
DOI.
[314]
L. Krombholz.
Multi-View Spectral Clustering on Single-View Data - Grouping High-Dimensional Representations of 3D Objects.
.
[313]
J. Goldsmith and F. Scheipl.
tf: S3 classes and methods for tidy functional data. R package.
2022.
GitHub.
[312]
J. Goldsmith and F. Scheipl.
tidyfun: Clean, wholesome, tidy fun with functional data in R. R package.
2022.
GitHub.
[311]
R. Valliant, J. A. Dever, F. Kreuter and M. R. Valliant.
Package ‘PracTools’.
2022.
URL.
[310]
W. Hartl, P. Kopper, A. Bender, F. Scheipl, A. G. Day, G. Elke and H. .
Protein intake and outcome of critically ill patients: analysis of a large international database using piece-wise exponential additive mixed models.
Critical Care 26.7 (Jan. 2022).
DOI.
[309]
R. Bach and F. Kreuter.
Big Data in einer digitalisierten, datengestützten Demokratie.
Demokratie und Öffentlichkeit im 21. Jahrhundert – zur Macht des Digitalen (2022).
DOI.
[308]
Z. A. Farsani and V. J. Schmid.
Modified Maximum Entropy Method and Estimating the AIF via DCE-MRI Data Analysis.
Entropy 24.2 (Jan. 2022).
DOI.
[307]
B. Felderer, A. Birg and F. Kreuter.
Paradaten.
Handbuch Methoden der empirischen Sozialforschung (2022).
DOI.
[306]
T. Milbich, K. Roth, B. Brattoli and B. Ommer.
Sharing Matters for Generalization in Deep Metric Learning.
IEEE Transactions on Pattern Analysis and Machine Intelligence 44.1 (Jan. 2022).
DOI.
[305]
F. Ott, D. Rügamer, L. Heublein, T. Hamann, J. Barth, B. Bischl and C. Mutschler.
Benchmarking online sequence-to-sequence and character-based handwriting recognition from IMU-enhanced pens.
International Journal on Document Analysis and Recognition 25.4 (2022).
DOI.
[304]
C. Fritz and G. Kauermann.
On the Interplay of Regional Mobility, Social Connectedness, and the Spread of COVID-19 in Germany.
Journal of the Royal Statistical Society. Series A (Statistics in Society) 185.1 (Jan. 2022).
DOI.
[303]
A. Python, A. Bender, M. Blangiardo, J. B. Illian, Y. Lin, B. Liu, T. C.D. Lucas, S. Tan, Y. Wen, D. Svanidze and J. Yin.
A downscaling approach to compare COVID-19 count data from databases aggregated at different spatial scales.
Journal of the Royal Statistical Society. Series A (Statistics in Society) 185.1 (Jan. 2022).
DOI.
[302]
V. Nguyen, M. H. Shaker and E. Hüllermeier.
How to measure uncertainty in uncertainty sampling for active learning.
Machine Learning 111.1 (2022).
DOI.
[301]
E. Hüllermeier, M. Wever, E. L. Mencica, J. Fürnkranz and M. Rapp.
A flexible class of dependence-aware multi-label loss functions.
Machine Learning 111.2 (Jan. 2022).
DOI.
[300]
M. Lange, V. Bergen, M. Klein, M. Setty, B. Reuter, M. Bakhti, H. Lickert, M. Ansari, J. Schniering, H. B. Schiller, D. Pe’er and F. J. Theis.
CellRank for directed single-cell fate mapping.
Nature Methods 19.2 (Jan. 2022).
DOI.
[299]
E. Dorigatti, J. Goschenhofer, B. Schubert, M. Rezaei and B. Bischl.
Positive-Unlabeled Learning with Uncertainty-aware Pseudo-label Selection.
Preprint at arXiv (Jan. 2022).
arXiv.
[298]
M. P. Kim, C. Kern, S. Goldwasser, F. Kreuter and O. Reingold.
Universal adaptability: Target-independent inference that competes with propensity scoring.
Proceedings of the National Academy of Sciences 119.4 (Jan. 2022).
DOI.
[297]
B. Sischka and G. Kauermann.
EM-Based Smooth Graphon Estimation Using MCMC and Spline-Based Approaches.
Social Networks 68 (Jan. 2022).
DOI.
[296]
C. A. Scholbeck, G. Casalicchio, C. Molnar, B. Bischl and C. Heumann.
Marginal Effects for Non-Linear Prediction Functions.
Under review (Jan. 2022).
arXiv.
2021
[295]
L. Qian, C. Plant and C. Böhm.
Density-based Clustering for Adaptive Density Variation.
21st IEEE International Conference on Data Mining (ICDM 2021). Auckland, New Zealand, Dec 07-10, 2021.
DOI.
[294]
A. Beer, L. Stephan and T. Seidl.
LUCKe- Connecting Clustering and Correlation Clustering.
IEEE International Conference on Data Mining Workshops (ICDMW 2021). Auckland, New Zealand, Dec 07-10, 2021.
DOI.
[293]
A. Lohrer, J. Deller, M. Hünemörder and P. Kröger.
OAB - An Open Anomaly Benchmark Framework for Unsupervised and Semisupervised Anomaly Detection on Image and Tabular Data Sets.
IEEE International Conference on Data Mining Workshops (ICDMW 2021). Auckland, New Zealand, Dec 07-10, 2021.
DOI.
[292]
M. Dahnert, J. Hou, M. Nießner and A. Dai.
Panoptic 3D Scene Reconstruction From a Single RGB Image.
35th Conference on Neural Information Processing Systems (NeurIPS 2021). Virtual, Dec 06-14, 2021.
URL.
GitHub.
[291]
J. Moosbauer, J. Herbinger, G. Casalicchio, M. Lindauer and B. Bischl.
Explaining Hyperparameter Optimization via Partial Dependence Plots.
35th Conference on Neural Information Processing Systems (NeurIPS 2021). Virtual, Dec 06-14, 2021.
URL.
GitHub.
[290]
M. Weber, J. Xie, M. D. Collins, Y. Zhu, P. Voigtlaender, H. Adam, B. Green, A. Geiger, B. Leibe, D. Cremers, A. Osep, L. Leal-Taixé and L.-C. Chen.
STEP: Segmenting and Tracking Every Pixel.
Track on Datasets and Benchmarks at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Virtual, Dec 06-14, 2021.
PDF.
[289]
Y. Zhang, A. Khakzar, Y. Li, A. Farshad, S. T. Kim and N. Navab.
Fine-Grained Neural Network Explanation by Identifying Input Features with Predictive Information.
Track on Datasets and Benchmarks at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Virtual, Dec 06-14, 2021.
URL.
[288]
T. Weber, M. Ingrisch, M. Fabritius, B. Bischl and D. Rügamer.
Survival-oriented embeddings for improving accessibility to complex data structures.
Workshop on Bridging the Gap: from Machine Learning Research to Clinical Practice at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Virtual, Dec 06-14, 2021.
arXiv.
[287]
T. Weber, M. Ingrisch, B. Bischl and D. Rügamer.
Towards modelling hazard factors in unstructured data spaces using gradient-based latent interpolation.
Workshop on Deep Generative Models and Downstream Applications at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Virtual, Dec 06-14, 2021.
PDF.
[286]
M. Mittermeier, M. Weigert and D. Rügamer.
Identifying the atmospheric drivers of drought and heat using a smoothed deep learning approach.
Workshop on Tackling Climate Change with Machine Learning at the 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Virtual, Dec 06-14, 2021.
PDF.
[285]
W. Ye, D. Mautz, C. Böhm, A. Singh and C. Plant.
Incorporating User's Preference into Attributed Graph Clustering.
IEEE Transactions on Knowledge and Data Engineering 33.12 (Dec. 2021).
DOI.
[284]
S. Kevork and G. Kauermann.
Iterative Estimation of Mixed Exponential Random Graph Models with Nodal Random Effects.
Network Science 9.4 (Dec. 2021).
DOI.
[283]
J. A. Salomon, A. Reinhart, A. Bilinski, E. J. Chua, W. La Motte-Kerr, M. M. Rönn, M. B. Reitsma, K. A. Morris, S. LaRocca, T. H. Farag, F. Kreuter, R. Rosenfeld and R. J. Tibshirani.
The US COVID-19 Trends and Impact Survey: Continuous real-time measurement of COVID-19 symptoms, risks, protective behaviors, testing, and vaccination.
Proceedings of the National Academy of Sciences 118.51 (Dec. 2021).
DOI.
[282]
M. Bernhard and M. Schubert.
Correcting Imprecise Object Locations for Training Object Detectors in Remote Sensing Applications.
Remote Sensing 13 (Dec. 2021).
URL.
[281]
Y. Elazar, N. Kassner, S. Ravfogel, A. Ravichander, E. Hovy, H. Schütze and Y. Goldberg.
Measuring and Improving Consistency in Pretrained Language Models.
Transactions of the Association for Computational Linguistics 9 (Dec. 2021).
DOI.
[280]
A. Farshad, S. Musatian, H. Dhamo and N. Navab.
MIGS: Meta Image Generation from Scene Graphs.
32nd British Machine Vision Conference (BMVC 2021). Virtual, Nov 22-25, 2021.
URL.
[279]
L. Koestler, N. Yang, N. Zeller and D. Cremers.
TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo.
Conference on Robot Learning (CoRL 2021). London, UK, Nov 08-11, 2021.
PDF.
GitHub.
[278]
N. Kees, M. Fromm, E. Faerman and T. Seidl.
Active Learning for Argument Strength Estimation.
2nd Workshop on Insights from Negative Results (Insights 2021) co-located at the Conference on Empirical Methods in Natural Language Processing (EMNLP 2021). Punta Cana, Dominican Republic, Nov 07-11, 2021.
DOI.
[277]
A. Maronikolakis, P. Dufter and H. Schütze.
BERT Cannot Align Characters.
2nd Workshop on Insights from Negative Results (Insights 2021) co-located at the Conference on Empirical Methods in Natural Language Processing (EMNLP 2021). Punta Cana, Dominican Republic, Nov 07-11, 2021.
DOI.
[276]
A. Imani, M. J. Sabet, L. K. Senel, P. Philipp, F. Yvon and H. Schütze.
Graph Algorithms for Multiparallel Word Alignment.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2021). Punta Cana, Dominican Republic, Nov 07-11, 2021.
DOI.
[275]
N. Kassner, O. Tafjord, H. Schütze and P. Clark.
BeliefBank: Adding Memory to a Pre-Trained Language Model for a Systematic Notion of Belief.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2021). Punta Cana, Dominican Republic, Nov 07-11, 2021.
DOI.
[274]
A. Maronikolakis, P. Dufter and H. Schütze.
Wine is not v i n. On the Compatibility of Tokenizations across Languages.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2021). Punta Cana, Dominican Republic, Nov 07-11, 2021.
DOI.
[273]
C. Fritz, M. Mehrl, P. W. Thurner and G. Kauermann.
The Role of Governmental Weapons Procurements in Forecasting Monthly Fatalities in Intrastate Conflicts: A Semiparametric Hierarchical Hurdle Model.
International Interactions 48.4 (Nov. 2021).
DOI.
[272]
M. Herrmann and F. Scheipl.
A Geometric Perspective on Functional Outlier Detection.
Stats 4.4 (Nov. 2021).
DOI.
[271]
M. Ali, M. Berrendorf, M. Galkin, V. Thost, T. Ma, V. Tresp and J. Lehmann.
Improving Inductive Link Prediction Using Hyper-Relational Facts.
20th International Semantic Web Conference (ISWC 2021). Virtual, Oct 24-28, 2021.
DOI.
GitHub.
[270]
G. Braso, N. Kister and L. Leal-Taixé.
The Center of Attention: Center-Keypoint Grouping Attention for Multi-Person Pose Estimation.
IEEE/CVF International Conference on Computer Vision (ICCV 2021). Virtual, Oct 11-17, 2021.
DOI.
[269]
S. Garg, H. Dhamo, A. Farshad, S. Musatian, N. Navab and F. Tombari.
Unconditional Scene Graph Generation.
IEEE/CVF International Conference on Computer Vision (ICCV 2021). Virtual, Oct 11-17, 2021.
DOI.
[268]
A. Khakzar, S. Musatian, J. Buchberger, I. V. Quiroz, N. Pinger, S. Baselizadeh, S. T. Kim and N. Navab.
Towards Semantic Interpretation of Thoracic Disease and COVID-19 Diagnosis Models.
24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). Strasbourg, France, Sep 27-Oct 01, 2021.
DOI.
[267]
A. Khakzar, Y. Zhang, W. Mansour, Y. Cai, Y. Li, Y. Zhang, S. T. Kim and N. Navab.
Explaining COVID-19 and Thoracic Pathology Model Predictions by Identifying Informative Input Features.
24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). Strasbourg, France, Sep 27-Oct 01, 2021.
DOI.
[266]
S. T. Kim, L. Goli, M. Paschali, A. Khakzar, M. Keicher, T. Czempiel, E. Burian, R. Braren, N. Navab and T. Wendler.
Longitudinal Quantitative Assessment of COVID-19 Infection Progression from Chest CTs.
24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2021). Strasbourg, France, Sep 27-Oct 01, 2021.
DOI.
[265]
D. Kazempour, A. Beer, M. Oelker, P. Kröger and T. Seidl.
Compound Segmentation via Clustering on Mol2Vec-based Embeddings.
17th IEEE eScience Conference (eScience 2021). Virtual, Sep 20-23, 2021.
DOI.
[264]
S. Obermeier, A. Beer, F. Wahl and T. Seidl.
Cluster Flow — an Advanced Concept for Ensemble-Enabling, Interactive Clustering.
19th Symposium of Database Systems for Business, Technology and Web (BTW 2021). Dresden, Germany, Sep 13-17, 2021.
DOI.
[263]
S. Coors, D. Schalk, B. Bischl and D. Rügamer.
Automatic Componentwise Boosting: An Interpretable AutoML System.
Automating Data Science Workshop (ADS 2021) at the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML-PKDD 2021). Virtual, Sep 13-17, 2021.
arXiv.
[262]
R. Sonabend, F. J. Király, A. Bender, B. Bischl and M. Lang.
mlr3proba: An R Package for Machine Learning in Survival Analysis.
Bioinformatics 37.17 (Sep. 2021).
DOI.
[261]
A. Lohrer, A. Beer, M. Hünemörder, J. Lauterbach, T. Seidl and P. Kröger.
AnyCORE - An Anytime Algorithm for Cluster Outlier REmoval.
Conference on Lernen. Wissen. Daten. Analysen (LWDA 2021). München, Germany, Sep 01-03, 2021.
PDF.
[260]
C. Fritz, P. W. Thurner and G. Kauermann.
Separable and Semiparametric Network-based Counting Processes applied to the International Combat Aircraft Trades.
Network Science 9.3 (Sep. 2021).
DOI.
[259]
F. Soleymani, M. Eslami, T. Elze, B. Bischl and M. Rezaei.
Deep Variational Clustering Framework for Self-labeling of Large-scale Medical Images.
Preprint at arXiv (Sep. 2021).
arXiv.
[258]
L. Miklautz, L. G. M. Bauer, D. Mautz, S. Tschiatschek, C. Böhm and C. Plant.
Details (Don't) Matter: Isolating Cluster Information in Deep Embedded Spaces.
30th International Joint Conference on Artificial Intelligence ((IJCAI 2021)). Montreal, Canada, Aug 19-26, 2021.
DOI.
[257]
C. Leiber, L. G. M. Bauer, B. Schelling, C. Böhm and C. Plant.
Dip-based Deep Embedded Clustering with k-Estimation.
27th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2021). Singapore, Aug 14-18, 2021.
DOI.
[256]
A. Imani, M. J. Sabet, P. Dufter, M. Cysouw and H. Schütze.
ParCourE: A Parallel Corpus Explorer for a Massively Multilingual Corpus.
Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021). Bangkok, Thailand, Aug 01-06, 2021.
DOI.
[255]
Y. Xing, Z. Shi, Z. Meng, G. Lakemeyer, Y. Ma and R. Wattenhofer.
KM-BART: Knowledge Enhanced Multimodal BART for Visual Commonsense Generation.
Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021). Bangkok, Thailand, Aug 01-06, 2021.
DOI.
[254]
M. P. Fabritius, M. Seidensticker, J. Rueckel, C. Heinze, M. Pech, K. J. Paprottka, P. M. Paprottka, J. Topalis, A. Bender, J. Ricke, A. Mittermeier and M. Ingrisch.
Bi-Centric Independent Validation of Outcome Prediction after Radioembolization of Primary and Secondary Liver Cancer.
Journal of Clinical Medicine 10.16 (Aug. 2021).
DOI.
[253]
M. Lebacher, P. W. Thurner and G. Kauermann.
Censored regression for modelling small arms trade volumes and its ‘Forensic’ use for exploring unreported trades.
Journal of the Royal Statistical Society. Series C (Applied Statistics) 70.4 (Aug. 2021).
DOI.
[252]
A. Bauer, F. Scheipl and H. Küchenhoff.
Registration for Incomplete Non-Gaussian Functional Data.
Preprint at arXiv (Aug. 2021).
arXiv.
[251]
H. Seibold, A. Charlton, A.-L. Boulesteix and S. Hoffmann.
Statisticians roll up your sleeves! There’s a crisis to be solved.
Significance 18.4 (Aug. 2021).
DOI.
[250]
F. Pfisterer, C. Kern, S. Dandl, M. Sun, M. P. Kim and B. Bischl.
mcboost: Multi-Calibration Boosting for R.
The Journal of Open Source Software 6.64 (Aug. 2021).
DOI.
[249]
Y. Wang, Y. Shen and D. Cremers.
Explicit pairwise factorized graph neural network for semi-supervised node classification.
Conference on Uncertainty in Artificial Intelligence (UAI 2021). Virtual, Jul 27-29, 2021.
PDF.
[248]
M. Biloš and S. Günnemann.
Scalable Normalizing Flows for Permutation Invariant Densities.
38th International Conference on Machine Learning (ICML 2021). Virtual, Jul 18-24, 2021.
URL.
[247]
T. Frerix, D. Kochkov, J. Smith, D. Cremers, M. Brenner and S. Hoyer.
Variational Data Assimilation with a Learned Inverse Observation Operator.
38th International Conference on Machine Learning (ICML 2021). Virtual, Jul 18-24, 2021.
URL.
[246]
G. König, T. Freiesleben and M. Grosse-Wentrup.
A causal perspective on meaningful and robust algorithmic recourse.
Workshop on Algorithmic Recourse at the 38th International Conference on Machine Learning (ICML 2021). Virtual, Jul 18-24, 2021.
URL.
[245]
P. Gijsbers, F. Pfisterer, J. van Rijn, B. Bischl and J. Vanschoren.
Meta-Learning for Symbolic Hyperparameter Defaults.
Genetic and Evolutionary Computation Conference (GECCO 2021). Lile, France, Jul 10-14, 2021.
DOI.
[244]
F. Pfisterer, J. van Rijn, P. Probst, A. Müller and B. Bischl.
Learning Multiple Defaults for Machine Learning Algorithms.
Genetic and Evolutionary Computation Conference (GECCO 2021). Lile, France, Jul 10-14, 2021.
DOI.
[243]
C. Böhm, M. Perdacher and C. Plant.
A Novel Hilbert Curve for Cache-Locality Preserving Loops.
IEEE Transactions on Big Data 7.2 (Jul. 2021).
DOI.
[242]
A. Python, A. Bender, A. K. Nandi, P. A. Hancock, R. Arambepola, J. Brandsch and T. C. D. Lucas.
Predicting non-state terrorism worldwide.
Science Advances 7.31 (Jul. 2021).
DOI.
[241]
M. Aygun, A. Osep, M. Weber, M. Maximov, C. Stachniss, J. Behley and L. Leal-Taixé.
4D Panoptic LiDAR Segmentation.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). Virtual, Jun 19-25, 2021.
DOI.
GitHub.
[240]
A. Božič, P. Palafox, M. Zollhöfer, J. Thies, A. Dai and M. Nießner.
Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). Virtual, Jun 19-25, 2021.
DOI.
[239]
D. Z. Chen, A. Gholami, M. Nießner and A. X. Chang.
Scan2Cap: Context-aware Dense Captioning in RGB-D Scans.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). Virtual, Jun 19-25, 2021.
DOI.
[238]
A. Dai, Y. Siddiqui, J. Thies, J. Valentin and M. Nießner.
SPSG: Self-Supervised Photometric Scene Generation from RGB-D Scans.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). Virtual, Jun 19-25, 2021.
DOI.
[237]
M. Eisenberger, D. Novotny, G. Kerchenbaum, P. Labatut, N. Neverova, D. Cremers and A. Vedaldi.
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). Virtual, Jun 19-25, 2021.
DOI.
GitHub.
[236]
G. Gafni, J. Thies, M. Zollhöfer and M. Nießner.
Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar Reconstruction.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). Virtual, Jun 19-25, 2021.
DOI.
[235]
M. Gao, Z. Lähner, J. Thunberg, D. Cremers and F. Bernard.
Isometric Multi-Shape Matching.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). Virtual, Jun 19-25, 2021.
DOI.
GitHub.
[234]
J. Hou, B. Graham, M. Nießner and S. Xie.
Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). Virtual, Jun 19-25, 2021.
DOI.
[233]
A. Khakzar, S. Baselizadeh, S. Khanduja, C. Rupprecht, S. T. Kim and N. Navab.
Neural Response Interpretation through the Lens of Critical Pathways.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). Virtual, Jun 19-25, 2021.
DOI.
[232]
N. Müller, Y.-S. Wong, N. J. Mitra, A. Dai and M. Nießner.
Seeing Behind Objects for 3D Multi-Object Tracking in RGB-D Sequences.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). Virtual, Jun 19-25, 2021.
DOI.
[231]
Y. Nie, J. Hou, X. Han and M. Nießner.
RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). Virtual, Jun 19-25, 2021.
DOI.
[230]
C. Tomani, S. Gruber, M. E. Erdem, D. Cremers and F. Buettner.
Post-hoc Uncertainty Calibration for Domain Drift Scenarios.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2021). Virtual, Jun 19-25, 2021.
DOI.
[229]
N. Strauß, L. Rottkamp, S. Schmoll and M. Schubert.
Efficient Parking Search using Shared Fleet Data.
22nd IEEE International Conference on Mobile Data Management (MDM 2021). Virtual, Jun 15-18, 2021.
DOI.
[228]
A. Maronikolakis, H. Schütze and M. Stevenson.
Identifying Automatically Generated Headlines using Transformers.
4th Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda (NLP4IF 2021). Mexico City, Mexico, Jun 06, 2021.
DOI.
[227]
P. Dufter, N. Kassner and H. Schütze.
Static Embeddings as Efficient Knowledge Bases?.
Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2021). Virtual, Jun 06-11, 2021.
DOI.
[226]
M. Binder, F. Pfisterer, M. Lang, L. Schneider, L. Kotthoff and B. Bischl.
mlr3pipelines - Flexible Machine Learning Pipelines in R.
Journal of Machine Learning Research 22.184 (Jun. 2021).
URL.
[225]
D. S. Fischer, A. C. Schaar and F. J. Theis.
Learning cell communication from spatial graphs of cells.
Preprint at bioRxiv (Jun. 2021).
DOI.
[224]
P. Müller, V. Golkov, V. Tomassini and D. Cremers.
Rotation-Equivariant Deep Learning for Diffusion MRI (short version).
International Society for Magnetic Resonance in Medicine Annual Meeting (ISMRM 2021). Virtual, May 15-20, 2021. Long version in arXiv.
arXiv.
[223]
J. Schuchardt, A. Bojchevski, J. Klicpera and S. Günnemann.
Collective Robustness Certificates - Exploiting Interdependence in Graph Neural Networks.
9th International Conference on Learning Representations (ICLR 2021). Virtual, May 03-07, 2021.
URL.
[222]
X. Sun, Y. Yu, Y. Liang, J. Dong, C. Plant and C. Böhm.
Fusing attributed and topological global-relations for network embedding.
Information Sciences 558 (May. 2021).
DOI.
[221]
M. Lotfollahi, A. K. Susmelj, C. De Donno, Y. Ji, I. L. Ibarra, F. A. Wolf, N. Yakubova, F. J. Theis and D. Lopez-Paz.
Compositional perturbation autoencoder for single-cell response modeling.
Preprint at bioRxiv (May. 2021).
DOI.
[220]
J. Wrobel and A. Bauer.
registr 2.0: Incomplete Curve Registration for Exponential Family Functional Data.
The Journal of Open Source Software 6.61 (May. 2021).
DOI.
GitHub.
[219]
A. Maronikolakis and H. Schütze.
Multidomain Pretrained Language Models for Green NLP.
2nd Workshop on Domain Adaptation for NLP (Adapt-NLP 2021). Kyiv, Ukraine, Apr 20, 2021.
URL.
[218]
N. Kassner, P. Dufter and H. Schütze.
Multilingual LAMA: Investigating Knowledge in Multilingual Pretrained Language Models.
16th Conference of the European Chapter of the Association for Computational Linguistics (EACL 2021). Virtual, Apr 19-23, 2021.
DOI.
[217]
Q. Khan, P. Wenzel and D. Cremers.
Self-Supervised Steering Angle Prediction for Vehicle Control Using Visual Odometry.
24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021). Virtual, Apr 13-15, 2021.
URL.
[216]
Y. Ma and V. Tresp.
Causal Inference under Networked Interference and Intervention Policy Enhancement.
24th International Conference on Artificial Intelligence and Statistics (AISTATS 2021). Virtual, Apr 13-15, 2021.
URL.
[215]
S. Hoffmann, F. Schönbrodt, R. Elsas, R. Wilson, U. Strasser and A.-L. Boulesteix.
The multiplicity of analysis strategies jeopardizes replicability: lessons learned across disciplines.
Royal Society Open Science 8.4 (Apr. 2021).
DOI.
[214]
M. Berrendorf, E. Faerman and V. Tresp.
Active Learning for Entity Alignment.
43rd European Conference on Information Retrieval (ECIR 2021). Virtual, Mar 28-Apr 01, 2021.
DOI.
GitHub.
[213]
M. Berrendorf, L. Wacker and E. Faerman.
A Critical Assessment of State-of-the-Art in Entity Alignment.
43rd European Conference on Information Retrieval (ECIR 2021). Virtual, Mar 28-Apr 01, 2021.
DOI.
GitHub.
[212]
M. Fromm, M. Berrendorf, S. Obermeier, T. Seidl and E. Faerman.
Diversity Aware Relevance Learning for Argument Search.
43rd European Conference on Information Retrieval (ECIR 2021). Virtual, Mar 28-Apr 01, 2021.
DOI.
GitHub.
[211]
A. Beer, E. Allerborn, V. Hartmann and T. Seidl.
KISS - A fast kNN-based Importance Score for Subspaces.
24th International Conference on Extending Database Technology (EDBT 2021). Nicosia, Cyprus, Mar 23-26, 2021.
PDF.
[210]
P. Kopper, S. Pölsterl, C. Wachinger, B. Bischl, A. Bender and D. Rügamer.
Semi-Structured Deep Piecewise Exponential Models.
AAAI Spring Symposium Series on Survival Prediction: Algorithms, Challenges and Applications (AAAI-SPACA 2021). Palo Alto, California, USA, Mar 21-24, 2021.
PDF.
[209]
M. Ali, M. Berrendorf, C. T. Hoyt, L. Vermue, S. Sharifzadeh, V. Tresp and J. Lehmann.
PyKEEN 1.0: A Python Library for Training and Evaluating Knowledge Graph Embeddings.
Journal of Machine Learning Research 22.82 (Mar. 2021).
PDF.
[208]
M. Fornasier, T. Klock and K. Riedl.
Consensus-based optimization methods converge globally.
Preprint at arXiv (Mar. 2021).
arXiv.
[207]
M. Fromm, E. Faerman, M. Berrendorf, S. Bhargava, R. Qi, Y. Zhang, L. Dennert, S. Selle, Y. Mao and T. Seidl.
Argument Mining Driven Analysis of Peer-Reviews.
35th Conference on Artificial Intelligence (AAAI 2021). Virtual, Feb 02-09, 2021.
DOI.
GitHub.
[206]
S. Sharifzadeh, S. M. Baharlou and V. Tresp.
Classification by Attention: Scene Graph Classification with Prior Knowledge.
35th Conference on Artificial Intelligence (AAAI 2021). Virtual, Feb 02-09, 2021.
DOI.
[205]
S. Klau, S. Hoffmann, C. Patel, J. P. A. Ioannidis and A.-L. Boulesteix.
Examining the robustness of observational associations to model, measurement and sampling uncertainty with the vibration of effects framework.
International Journal of Epidemiology 50.1 (Feb. 2021).
DOI.
[204]
J. Goschenhofer, R. Hvingelby, D. Rügamer, J. Thomas, M. Wagner and B. Bischl.
Deep Semi-Supervised Learning for Time Series Classification.
Preprint at arXiv (Feb. 2021).
arXiv.
[203]
G. König, C. Molnar, B. Bischl and M. Grosse-Wentrup.
Relative Feature Importance.
25th International Conference on Pattern Recognition (ICPR 2020). Virtual - Milano, Italy, Jan 10-15, 2021.
DOI.
[202]
S. Schmoll and M. Schubert.
Semi-Markov Reinforcement Learning for Stochastic Resource Collection.
29th International Joint Conference on Artificial Intelligence (IJCAI 2020). Yokohama, Japan (postponed due to the Corona pandemic), Jan 07-15, 2021.
DOI.
[201]
Z. Chongyu.
GPU-based Data Mining on Android Devices.
.
[200]
S. Schmoll.
Navigation with uncertain spatio-temporal resources.
.
DOI.
[199]
C. Scholbeck.
A C++ Library for Extensible Decision Trees.
.
[198]
M. Becker, S. Gruber, J. Richter, J. Moosbauer and B. Bischl.
mlr3hyperband: Hyperband for 'mlr3'.
2021.
URL.
GitHub.
[197]
M. Becker, M. Lang, J. Richter, B. Bischl and D. Schalk.
mlr3tuning: Tuning for 'mlr3'.
2021.
URL.
GitHub.
[196]
M. Becker, J. Richter, M. Lang, B. Bischl and M. Binder.
bbotk: Black-Box Optimization Toolkit.
2021.
URL.
GitHub.
[195]
M. Binder.
mlrintermbo: Model-Based Optimization for 'mlr3' through 'mlrMBO'.
2021.
URL.
GitHub.
[194]
M. Lang.
mlr3measures: Performance Measures for 'mlr3'.
2021.
URL.
[193]
M. Lang, B. Bischl, J. Richter, X. Sun and M. Binder.
paradox: Define and Work with Parameter Spaces for Complex Algorithms.
2021.
URL.
GitHub.
[192]
D. Rügamer, F. Pfisterer and P. Baumann.
deepregression: Fitting Semi-Structured Deep Distributional Regression in R.
2021.
GitHub.
[191]
P. Schratz and M. Becker.
mlr3spatiotempcv: Spatiotemporal Resampling Methods for 'mlr3'.
2021.
URL.
[190]
B. X. W. Liew, D. Rügamer, A. De Nunzio and D. Falla.
Harnessing time-series kinematic and electromyography signals as predictors to discriminate amongst low back pain recovery status.
Brain and Spine 1 (Jan. 2021).
DOI.
[189]
I. Gerostathopoulos, F. Plášil, C. Prehofer, J. Thomas and B. Bischl.
Automated Online Experiment-Driven Adaptation--Mechanics and Cost Aspects.
IEEE Access 9 (2021).
DOI.
[188]
H. Seibold, S. Czerny, S. Decke, R. Dieterle, T. Eder, S. Fohr, N. Hahn, R. Hartmann, C. Heindl, P. Kopper, D. Lepke, V. Loidl, M. Mandl, S. Musiol, J. Peter, A. Piehler, E. Rojas, S. Schmid, H. Schmidt, M. Schmoll, L. Schneider, X.-Y. To, V. Tran, A. Völker, M. Wagner, J. Wagner, M. Waize, H. Wecker, R. Yang, S. Zellner and M. Nalenz.
A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses.
PLOS One 16.6 (2021).
DOI.
[187]
M. Weigert, A. Bauer, J. Gernert, M. Karl, A. Nalmpatian, H. Küchenhoff and J. Schmude.
Semiparametric APC analysis of destination choice patterns: Using generalized additive models to quantify the impact of age, period, and cohort on travel distances.
Tourism Economics 28.5 (Jan. 2021).
DOI.
2020
[186]
M. Berrendorf, E. Faerman, L. Vermue and V. Tresp.
Interpretable and Fair Comparison of Link Prediction or Entity Alignment Methods with Adjusted Mean Rank.
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2020). Virtual, Dec 14-17, 2020.
DOI.
[185]
E. Faerman, F. Borutta, J. Busch and M. Schubert.
Ada-LLD: Adaptive Node Similarity Using Multi-Scale Local Label Distributions.
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2020). Virtual, Dec 14-17, 2020.
DOI.
[184]
S. Obermeier, M. Berrendorf and P. Kröger.
Memory-Efficient RkNN Retrieval by Nonlinear k-Distance Approximation.
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2020). Virtual, Dec 14-17, 2020.
DOI.
[183]
C. Böhm and C. Plant.
Massively Parallel Graph Drawing and Representation Learning.
IEEE International Conference on Big Data (IEEE BigData 2020). Virtual, Dec 10-13, 2020.
DOI.
[182]
C. Böhm and C. Plant.
Massively Parallel Random Number Generation.
IEEE International Conference on Big Data (IEEE BigData 2020). Virtual, Dec 10-13, 2020.
DOI.
[181]
M. Perdacher, C. Plant and C. Böhm.
Improved Data Locality Using Morton-order Curve on the Example of LU Decomposition.
IEEE International Conference on Big Data (IEEE BigData 2020). Virtual, Dec 10-13, 2020.
DOI.
[180]
Y. Ma and V. Tresp.
A Variational Quantum Circuit Model for Knowledge Graph Embeddings.
1st Workshop on Quantum Tensor Networks in Machine Learning (QTNML 2020) at the 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Virtual, Dec 06-12, 2020.
PDF.
[179]
B. Charpentier, D. Zügner and S. Günnemann.
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts.
34th Conference on Neural Information Processing Systems (NeurIPS 2020). Virtual, Dec 06-12, 2020.
PDF.
[178]
M. Eisenberger, A. Toker, L. Leal-Taixé and D. Cremers.
Deep Shells: Unsupervised Shape Correspondence with Optimal Transport.
34th Conference on Neural Information Processing Systems (NeurIPS 2020). Virtual, Dec 06-12, 2020.
PDF.
[177]
S. Geisler, D. Zügner and S. Günnemann.
Reliable Graph Neural Networks via Robust Aggregation.
34th Conference on Neural Information Processing Systems (NeurIPS 2020). Virtual, Dec 06-12, 2020.
PDF.
[176]
R. Kurle, S. S. Rangapuram, E. de Bézenac, S. Günnemann and J. Gasthaus.
Deep Rao-Blackwellised Particle Filters for Time Series Forecasting.
34th Conference on Neural Information Processing Systems (NeurIPS 2020). Virtual, Dec 06-12, 2020.
PDF.
[175]
O. Shchur, N. Gao, M. Biloš and S. Günnemann.
Fast and Flexible Temporal Point Processes with Triangular Maps.
34th Conference on Neural Information Processing Systems (NeurIPS 2020). Virtual, Dec 06-12, 2020.
PDF.
[174]
J. Busch, E. Faerman, M. Schubert and T. Seidl.
Learning Self-Expression Metrics for Scalable and Inductive Subspace Clustering.
Workshop on Self-Supervised Learning - Theory and Practice (SSL 2020) at the 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Virtual, Dec 06-12, 2020.
arXiv.
GitHub.
[173]
M. Berrendorf and E. Faerman.
mberr/ea-active-learning: Zenodo. Version 1.0.1.
2020.
DOI.
[172]
M. Berrendorf, L. Wacker and E. Faerman.
mberr/ea-sota-comparison: Zenodo. Version v1.1.1.
2020.
DOI.
[171]
E. Asgari, M. J. Sabet, P. Dufter, C. Ringlstetter and H. Schütze.
Subword Sampling for Low Resource Word Alignment.
Preprint at arXiv (Dec. 2020).
arXiv.
[170]
M. Herrmann and F. Scheipl.
Unsupervised Functional Data Analysis via Nonlinear Dimension Reduction.
Preprint at arXiv (Dec. 2020).
arXiv.
[169]
M. Aygün, Z. Lähner and D. Cremers.
Unsupervised Dense Shape Correspondence using Heat Kernels.
8th International Conference on 3D Vision (3DV 2020). Virtual, Nov 25-28, 2020.
DOI.
[168]
N. Demmel, M. Gao, E. Laude, T. Wu and D. Cremers.
Distributed Photometric Bundle Adjustment.
8th International Conference on 3D Vision (3DV 2020). Virtual, Nov 25-28, 2020.
DOI.
[167]
B. Holzschuh, Z. Lähner and D. Cremers.
Simulated Annealing for 3D Shape Correspondence.
8th International Conference on 3D Vision (3DV 2020). Virtual, Nov 25-28, 2020.
DOI.
[166]
L. von Stumberg, P. Wenzel, N. Yang and D. Cremers.
LM-Reloc: Levenberg-Marquardt Based Direct Visual Relocalization.
8th International Conference on 3D Vision (3DV 2020). Virtual, Nov 25-28, 2020.
DOI.
[165]
N. Kassner, B. Krojer and H. Schütze.
Are Pretrained Language Models Symbolic Reasoners over Knowledge?.
24th Conference on Computational Natural Language Learning (CoNLL 2020). Virtual, Nov 19-20, 2020.
DOI.
[164]
D. Kazempour, A. Beer, P. Kröger and T. Seidl.
I fold you so! An internal evaluation measure for arbitrary oriented subspace clustering through piecewise-linear approximations of manifolds.
IEEE International Conference on Data Mining Workshops (ICDMW 2020). Sorrento, Italy, Nov 17-20, 2020.
DOI.
[163]
D. Kazempour, P. Kröger and T. Seidl.
Towards an Internal Evaluation Measure for Arbitrarily Oriented Subspace Clustering.
IEEE International Conference on Data Mining Workshops (ICDMW 2020). Sorrento, Italy, Nov 17-20, 2020.
DOI.
[162]
D. Kazempour, L. M. Yan, P. Kröger and T. Seidl.
You see a set of wagons - I see one train: Towards a unified view of local and global arbitrarily oriented subspace clusters.
IEEE International Conference on Data Mining Workshops (ICDMW 2020). Sorrento, Italy, Nov 17-20, 2020.
DOI.
[161]
N. Kassner and H. Schütze.
BERT-kNN: Adding a kNN Search Component to Pretrained Language Models for Better QA.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2020). Virtual, Nov 16-20, 2020.
DOI.
[160]
M. J. Sabet, P. Dufter, F. Yvon and H. Schütze.
SimAlign: High Quality Word Alignments without Parallel Training Data using Static and Contextualized Embeddings.
Conference on Empirical Methods in Natural Language Processing (EMNLP 2020). Virtual, Nov 16-20, 2020.
DOI.
[159]
O. G. Holmberg, N. D. Köhler, T. Martins, J. Siedlecki, T. Herold, L. Keidel, B. Asani, J. Schiefelbein, S. Priglinger, K. U. Kortuem and F. J. Theis.
Self-supervised retinal thickness prediction enables deep learning from unlabelled data to boost classification of diabetic retinopathy.
Nature Machine Intelligence 2.11 (Nov. 2020).
DOI.
[158]
A. Agrawal, F. Pfisterer, B. Bischl, J. Chen, S. Sood, S. Shah, F. Buet-Golfouse, B. A. Mateen and S. Vollmer.
Debiasing classifiers: is reality at variance with expectation?.
Preprint at arXiv (Nov. 2020).
arXiv.
[157]
Y. Ma, Z. Han and V. Tresp.
Learning with Temporal Knowledge Graphs.
CIKM 2020 Workshops (CIKMW 2020) co-located with the 29th ACM International Conference on Information and Knowledge Management (CIKM 2020). Galway, Ireland, Oct 19-23, 2020. Invited talk.
PDF.
[156]
A. Maldonado, J. Sontheim, F. Richter and T. Seidl.
Performance Skyline: Inferring Process Performance Models from Interval Events.
1st International Workshop on Streaming Analytics for Process Mining (SA4PM 2020) in conjunction with the 2nd International Conference on Process Mining (ICPM 2020). Virtual, Oct 04-09, 2020.
DOI.
[155]
T. Czempiel, M. Paschali, M. Keicher, W. Simson, H. Feussner, S. T. Kim and N. Navab.
TeCNO: Surgical Phase Recognition with Multi-stage Temporal Convolutional Network.
23rd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2020). Virtual, Oct 04-08, 2020.
DOI.
[154]
T. Seidl.
Keynote: Data Mining on Process Data.
2nd International Conference on Process Mining (ICPM 2020). Virtual, Oct 04-09, 2020.
DOI.
[153]
S. Denner, A. Khakzar, M. Sajid, M. Saleh, Z. Spiclin, S. T. Kim and N. Navab.
Spatio-temporal learning from longitudinal data for multiple sclerosis lesion segmentation.
Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020) at the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2020). Virtual, Oct 04-08, 2020.
DOI.
[152]
Y. Yeganeh, A. Farshad, N. Navab and S. Albarqouni.
Inverse Distance Aggregation for Federated Learning with Non-IID Data.
Workshop on Domain Adaptation and Representation Transfer, and Distributed and Collaborative Learning (DART DCL 2020) at the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2020). Virtual, Oct 04-08, 2020.
DOI.
[151]
P. F. M. Baumann, T. Hothorn and D. Rügamer.
Deep Conditional Transformation Models.
Preprint at arXiv (Oct. 2020).
arXiv.
[150]
M. Berrendorf, L. Wacker and E. Faerman.
A Critical Assessment of State-of-the-Art in Entity Alignment.
Preprint at arXiv (Oct. 2020).
arXiv.
[149]
G. Fabbro, V. Golkov, T. Kemp and D. Cremers.
Speech Synthesis and Control Using Differentiable DSP.
Preprint at arXiv (Oct. 2020).
arXiv.
[148]
D. Rügamer, F. Pfisterer and B. Bischl.
Neural Mixture Distributional Regression.
Preprint at arXiv (Oct. 2020).
arXiv.
[147]
B. X. W. Liew, A. Peolsson, D. Rugamer, J. Wibault, H. Löfgren, A. Dedering, P. Zsigmond and D. Falla.
Clinical predictive modelling of post-surgical recovery in individuals with cervical radiculopathy – a machine learning approach.
Scientific Reports 10 (Oct. 2020).
DOI.
[146]
A.-L. Boulesteix, A. Charlton, S. Hoffmann and H. Seibold.
A replication crisis in methodological research?.
Significance 17.5 (Oct. 2020).
DOI.
[145]
A. Beer, D. Seeholzer, N. S. Schüler and T. Seidl.
Angle-Based Clustering.
13th International Conference on Similarity Search and Applications (SISAP 2020). Virtual, Sep 30-Oct 02, 2020.
DOI.
[144]
P. Wenzel, R. Wang, N. Yang, Q. Cheng, Q. Khan, L. Stumberg, N. Zeller and D. Cremers.
4Seasons: A Cross-Season Dataset for Multi-Weather SLAM in Autonomous Driving.
42nd German Conference on Pattern Recognition (DAGM-GCPR 2020). Tübingen, Germany, Sep 28-Oct 01, 2020.
DOI.
[143]
A. Markham, A. Chivukula and M. Grosse-Wentrup.
MeDIL: A Python Package for Causal Modelling.
10th International Conference on Probabilistic Graphical Models (PGM 2020). Aalborg, Denmark, Sep 23-25, 2020.
URL.
GitHub.
[142]
A. Bender, D. Rügamer, F. Scheipl and B. Bischl.
A General Machine Learning Framework for Survival Analysis.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2020). Virtual, Sep 14-18, 2020.
DOI.
[141]
C. Molnar, G. Casalicchio and B. Bischl.
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges.
Workshops of the European Conference on Machine Learning and Knowledge Discovery in Databases (Workshops ECML-PKDD 2020). Virtual, Sep 14-18, 2020.
DOI.
[140]
A. Beer, D. Kazempour, J. Busch, A. Tekles and T. Seidl.
Grace - Limiting the Number of Grid Cells for Clustering High-Dimensional Data.
Conference on Lernen. Wissen. Daten. Analysen (LWDA 2020). Bonn, Germany, Sep 09-11, 2020.
PDF.
[139]
S. Mahadevan, A. Athar, A. Osep, S. Hennen, L. Leal-Taixé and B. Leibe.
Making a Case for 3D Convolutions for Object Segmentation in Videos.
31st British Machine Vision Conference (BMVC 2020). Virtual, Sep 07-10, 2020.
URL.
[138]
S. Dandl, C. Molnar, M. Binder and B. Bischl.
Multi-Objective Counterfactual Explanations.
16th International Conference on Parallel Problem Solving from Nature (PPSN 2020). Leiden, Netherlands, Sep 05-09, 2020.
DOI.
[137]
Z. Ye, T. Möllenhoff, T. Wu and D. Cremers.
Optimization of Graph Total Variation via Active-Set-based Combinatorial Reconditioning.
23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020). Virtual, Aug 26-28, 2020.
URL.
[136]
A. Athar, S. Mahadevan, A. Osep, L. Leal-Taixé and B. Leibe.
STEm-Seg: Spatio-temporal Embeddings for Instance Segmentation in Videos.
16th European Conference on Computer Vision (ECCV 2020). Virtual, Aug 23-28, 2020.
DOI.
[135]
J. Du, R. Wang and D. Cremers.
DH3D: Deep Hierarchical 3D Descriptors for Robust Large-Scale 6DoF Relocalization.
16th European Conference on Computer Vision (ECCV 2020). Virtual, Aug 23-28, 2020.
DOI.
[134]
C. Plant, S. Biedermann and C. Böhm.
Data Compression as a Comprehensive Framework for Graph Drawing and Representation Learning.
26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2020). San Diego, California, USA, Aug 23-27, 2020.
DOI.
[133]
D. Zügner and S. Günnemann.
Certifiable Robustness of Graph Convolutional Networks under Structure Perturbation.
26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2020). San Diego, California, USA, Aug 23-27, 2020.
DOI.
[132]
A. Markham and M. Grosse-Wentrup.
Measurement Dependence Inducing Latent Causal Models.
Conference on Uncertainty in Artificial Intelligence (UAI 2020). Toronto, Canada, Aug 04-06, 2020.
URL.
[131]
M. Herrmann, P. Probst, R. Hornung, V. Jurinovic and A.-L. Boulesteix.
Large-scale benchmark study of survival prediction methods using multi-omics data.
Briefings in Bioinformatics (Aug. 2020).
DOI.
[130]
V. Bergen, M. Lange, S. Peidli, F. A. Wolf and F. J. Theis.
Generalizing RNA velocity to transient cell states through dynamical modeling.
Nature Biotechnology 38 (Aug. 2020).
DOI.
[129]
R. Sonabend, F. J. Király, A. Bender, B. Bischl and M. Lang.
mlr3proba: Machine Learning Survival Analysis in R.
Preprint at arXiv (Aug. 2020).
arXiv.
[128]
C. Fritz, M. Lebacher and G. Kauermann.
Tempus volat, hora fugit: A survey of tie-oriented dynamic network models in discrete and continuous time.
Statistica Neerlandica 74.3 (Aug. 2020).
DOI.
[127]
M. Binder, F. Pfisterer and B. Bischl.
Collecting empirical data about hyperparameters for data driven AutoML.
7th Workshop on Automated Machine Learning (AutoML 2020) co-located with ICML 2020. Virtual, Jul 18, 2020.
PDF.
[126]
A. Khakzar, S. Baselizadeh and N. Navab.
Rethinking Positive Aggregation and Propagation of Gradients in Gradient-based Saliency Methods.
5th Workshop on Human Interpretability in Machine Learning (WHI 2020) at the 37th International Conference on Machine Learning (ICML 2020). Virtual, Jul 12-18, 2020.
arXiv.
[125]
L. Dony, M. König, D. Fischer and F. J. Theis.
Variational autoencoders with flexible priors enable robust distribution learning on single-cell RNA sequencing data.
Workshop on Computational Biology (WCB 2020) at the 37th International Conference on Machine Learning (ICML 2020). Virtual, Jul 12-18, 2020.
URL.
PDF.
[124]
C. Molnar, G. König, J. Herbinger, T. Freiesleben, S. Dandl, C. A. Scholbeck, G. Casalicchio, M. Grosse-Wentrup and B. Bischl.
General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models.
Workshop on Extending Explainable AI Beyond Deep Models and Classifiers (XXAI 2020) at the 37th International Conference on Machine Learning (ICML 2020). Virtual, Jul 12-18, 2020.
DOI.
[123]
M. Binder, J. Moosbauer, J. Thomas and B. Bischl.
Multi-Objective Hyperparameter Tuning and Feature Selection Using Filter Ensembles.
Genetic and Evolutionary Computation Conference (GECCO 2020). Cancun, Mexico, Jul 08-12, 2020.
DOI.
[122]
A. Beer, V. Hartmann and T. Seidl.
Orderings of Data - more than a Tripping Hazard.
32nd International Conference on Scientific and Statistical Database Management (SSDBM 2020). Vienna, Austria, Jul 07-09, 2020.
DOI.
[121]
N. Kassner and H. Schütze.
Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly.
58th Annual Meeting of the Association for Computational Linguistics (ACL 2020). Virtual, Jul 05-10, 2020.
DOI.
[120]
D. Mautz, C. Plant and C. Böhm.
DeepECT: The Deep Embedded Cluster Tree.
Data Science and Engineering 5 (Jul. 2020).
DOI.
[119]
N. Ellenbach, A.-L. Boulesteix, B. Bischl, K. Unger and R. Hornung.
Improved outcome prediction across data sources through robust parameter tuning.
Journal of Classification (Jul. 2020).
DOI.
[118]
V. Golkov, A. Becker, D. T. Plop, D. Čuturilo, N. Davoudi, J. Mendenhall, R. Moretti, J. Meiler and D. Cremers.
Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost Functions.
Preprint at arXiv (Jul. 2020).
arXiv.
[117]
M. Lotfollahi, M. Naghipourfar, M. D. Luecken, M. Khajavi, M. Büttner, Ž. Avsec, A. V. Misharin and F. J. Theis.
Query to reference single-cell integration with transfer learning.
Preprint at bioRxiv (Jul. 2020).
DOI.
[116]
C. Stachl, Q. Au, R. Schoedel, S. D. Gosling, G. M. Harari, D. Buschek, S. T. Völkel, T. Schuwerk, M. Oldemeier, T. Ullmann, H. Hussmann, B. Bischl and M. Bühner.
Predicting personality from patterns of behavior collected with smartphones.
Proceedings of the National Academy of Sciences 117.30 (Jul. 2020).
DOI.
[115]
S. Friedl, S. Schmoll, F. Borutta and M. Schubert.
SMART-Env.
21st IEEE International Conference on Mobile Data Management (MDM 2020). Versailles, France, Jun 30-Jul 03, 2020.
DOI.
[114]
G. Brasó and L. Leal-Taixé.
Learning a Neural Solver for Multiple Object Tracking.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020). Virtual, Jun 14-19, 2020.
DOI.
[113]
H. Dhamo, A. Farshad, I. Laina, N. Navab, G. D. Hager, F. Tombari and C. Rupprecht.
Semantic Image Manipulation Using Scene Graphs.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020). Virtual, Jun 14-19, 2020.
DOI.
[112]
M. Eisenberger, Z. Lähner and D. Cremers.
Smooth Shells: Multi-Scale Shape Registration with Functional Maps.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020). Virtual, Jun 14-19, 2020.
DOI.
[111]
F. Wimbauer, N. Yang, L. von Stumberg, N. Zeller and D. Cremers.
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020). Virtual, Jun 14-19, 2020.
DOI.
[110]
Y. Xu, A. Osep, Y. Ban, R. Horaud, L. Leal-Taixé and X. Alameda-Pineda.
How To Train Your Deep Multi-Object Tracker.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020). Virtual, Jun 14-19, 2020.
DOI.
[109]
N. Yang, L. von Stumberg, R. Wang and D. Cremers.
D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual Odometry.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020). Virtual, Jun 14-19, 2020.
DOI.
[108]
M. Ali, C. T. Hoyt, L. Vermue, M. Galkin and M. Berrendorf.
pykeen/benchmarking. Version v1.0.
2020.
DOI.
[107]
D. Mautz, W. Ye, C. Plant and C. Böhm.
Non-Redundant Subspace Clusterings with Nr-Kmeans and Nr-DipMeans.
ACM Transactions on Knowledge Discovery from Data 14.5 (Jun. 2020).
DOI.
[106]
Y. Shen and D. Cremers.
A Chain Graph Interpretation of Real-World Neural Networks.
Preprint at arXiv (Jun. 2020).
arXiv.
[105]
A. Beyer, G. Kauermann and H. Schütze.
Embedding Space Correlation as a Measure of Domain Similarity.
12th International Conference on Language Resources and Evaluation (LREC 2020). Marseille, France, May 13-15, 2020.
URL.
[104]
J. Jungmaier, N. Kassner and B. Roth.
Dirichlet-Smoothed Word Embeddings for Low-Resource Settings.
12th International Conference on Language Resources and Evaluation (LREC 2020). Marseille, France, May 13-15, 2020.
URL.
[103]
F. Borutta, D. Kazempour, F. Marty, P. Kröger and T. Seidl.
Detecting Arbitrarily Oriented Subspace Clusters in Data Streams Using Hough Transform.
24th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2020). Singapore, May 11-14, 2020.
DOI.
[102]
S. Klau, M.-L. Martin-Magniette, A.-L. Boulesteix and S. Hoffmann.
Sampling uncertainty versus method uncertainty: a general framework with applications to omics biomarker selection.
Biometrical Journal 62.3 (May. 2020).
DOI.
[101]
J. Klicpera, J. Groß and S. Günnemann.
Directional Message Passing for Molecular Graphs.
8th International Conference on Learning Representations (ICLR 2020). Virtual, Apr 26-May 01, 2020.
URL.
[100]
O. Shchur, M. Biloš and S. Günnemann.
Intensity-Free Learning of Temporal Point Processes (selected for spotlight presentation).
8th International Conference on Learning Representations (ICLR 2020). Virtual, Apr 26-May 01, 2020.
URL.
[99]
M. Berrendorf, E. Faerman and V. Tresp.
Active Learning for Entity Alignment.
5th International Workshop on Deep Learning for Graphs (DL4G@WWW2020) at the ACM Web Conference 2020 (WWW 2020). Taipeh, Taiwan, Apr 21, 2020.
arXiv.
[98]
M. Berrendorf, E. Faerman, L. Vermue and V. Tresp.
Interpretable and Fair Comparison of Link Prediction or Entity Alignment Methods with Adjusted Mean Rank (Extended Abstract).
5th International Workshop on Deep Learning for Graphs (DL4G@WWW2020) at the ACM Web Conference 2020 (WWW 2020). Taipeh, Taiwan, Apr 21, 2020. Full papaer at WI-AT 2020.
DOI.
[97]
M. C. Altinigneli, L. Miklautz, C. Böhm and C. Plant.
Hierarchical Quick Shift Guided Recurrent Clustering.
36th IEEE International Conference on Data Engineering (ICDE 2020). Dallas, TX, USA, Apr 20-24, 2020.
DOI.
[96]
M. Berrendorf, E. Faerman, V. Melnychuk, V. Tresp and T. Seidl.
Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned.
42nd European Conference on Information Retrieval (ECIR 2020). Virtual, Apr 14-17, 2020.
DOI.
GitHub.
[95]
L. von Stumberg, P. Wenzel, Q. Khan and D. Cremers.
GN-Net: The Gauss-Newton Loss for Multi-Weather Relocalization.
IEEE Robotics and Automation Letters 5.2 (Apr. 2020).
DOI.
[94]
A. Bommert, X. Sun, B. Bischl, J. Rahnenführer and M. Lang.
Benchmark for filter methods for feature selection in high-dimensional classification data.
Computational Statistics and Data Analysis 143 (Mar. 2020).
DOI.
[93]
B. X. W. Liew, D. Rugamer, A. M De Nunzio and D. Falla.
Interpretable machine learning models for classifying low back pain status using functional physiological variables.
European Spine Journal 29 (Mar. 2020).
DOI.
[92]
M. Hildebrandt, J. A. Q. Serna, Y. Ma, M. Ringsquandl, M. Joblin and V. Tresp.
Reasoning on Knowledge Graphs with Debate Dynamics.
34th Conference on Artificial Intelligence (AAAI 2020). New York City, New York, USA, Feb 07-12, 2020.
DOI.
[91]
L. Miklautz, D. Mautz, C. Altinigneli, C. Böhm and C. Plant.
Deep embedded non-redundant clustering.
34th Conference on Artificial Intelligence (AAAI 2020). New York City, New York, USA, Feb 07-12, 2020.
DOI.
[90]
B. X. W. Liew, D. Rügamer, A. Stocker and A. M. De Nunzio.
Classifying neck pain status using scalar and functional biomechanical variables -- Development of a method using functional data boosting.
Gait and Posture 76 (Feb. 2020).
DOI.
[89]
M. Berrendorf, E. Faerman, L. Vermue and V. Tresp.
On the Ambiguity of Rank-Based Evaluation of Entity Alignment or Link Prediction Methods.
Technical Report (Feb. 2020).
arXiv.
[88]
M. Becker, P. Schratz, M. Lang and B. Bischl.
mlr3fselect: Feature Selection for 'mlr3'.
2020.
URL.
[87]
M. Binder, F. Pfisterer, L. Schneider, B. Bischl, M. Lang and S. Dandl.
mlr3pipelines: Preprocessing Operators and Pipelines for 'mlr3'.
2020.
URL.
GitHub.
[86]
M. Herrmann.
fda-ndr: Unsupervised Functional Data Analysis via Nonlinear Dimension Reduction. R package.
2020.
GitHub.
[85]
M. Herrmann.
manifun: Collection of functions to work with embeddings and functional data. R package.
2020.
GitHub.
[84]
M. Lang.
mlr3db: Data Base Backend for 'mlr3'.
2020.
URL.
GitHub.
[83]
M. Lang.
mlr3oml: Connector Between 'mlr3' and 'OpenML'.
2020.
URL.
GitHub.
[82]
M. Lang, Q. Au, S. Coors and P. Schratz.
mlr3learners: Recommended Learners for 'mlr3'.
2020.
URL.
GitHub.
[81]
M. Lang, P. Schratz and R. Sonabend.
mlr3viz: Visualizations for 'mlr3'.
2020.
URL.
GitHub.
[80]
D. Pulatov and M. Lang.
mlr3cluster: Cluster Extension for 'mlr3'.
2020.
URL.
GitHub.
[79]
F. Scheipl, J. Goldsmith and J. Wrobel.
tidyfun: Tools for Tidy Functional Data. R package.
2020.
URL.
GitHub.
[78]
P. Schratz, M. Lang, B. Bischl and M. Binder.
mlr3filters: Filter Based Feature Selection for 'mlr3'.
2020.
URL.
GitHub.
[77]
R. Sonabend, F. Kiraly and M. Lang.
mlr3proba: Probabilistic Supervised Learning for 'mlr3'. R package version 0.2.6.
2020.
DOI.
URL.
[76]
J. Wrobel, A. Bauer, J. Goldsmith, E. McDonnel and F. Scheipl.
registr: Curve Registration for Exponential Family Functional Data. R package.
2020.
GitHub.
[75]
D. Davletshina, V. Melnychuk, V. Tran, H. Singla, M. Berrendorf, E. Faerman, M. Fromm and M. Schubert.
Unsupervised Anomaly Detection for X-Ray Images.
Preprint at arXiv (Jan. 2020).
arXiv.
2019
[74]
C. Böhm, M. Perdacher and C. Plant.
A Novel Hilbert Curve for Cache-locality Preserving Loops.
IEEE International Conference on Big Data (IEEE BigData 2019). Los Angeles, CA, USA, Dec 09-12, 2019.
DOI.
[73]
M. Biloš, B. Charpentier and S. Günnemann.
Uncertainty on Asynchronous Time Event Prediction (Poster).
33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver, Canada, Dec 08-14, 2019.
PDF.
[72]
A. Bojchevski and S. Günnemann.
Certifiable Robustness to Graph Perturbations.
33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver, Canada, Dec 08-14, 2019.
PDF.
[71]
J. Klicpera, S. Weißenberger and S. Günnemann.
Diffusion Improves Graph Learning.
33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver, Canada, Dec 08-14, 2019.
PDF.
[70]
S. Rabanser, S. Günnemann and Z. Lipton.
Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift.
33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver, Canada, Dec 08-14, 2019.
PDF.
[69]
A. Markham and M. Grosse-Wentrup.
Measurement Dependence Inducing Latent Causal Models (WS paper).
Workshop on Do the right thing: machine learning and causal inference for improved decision making at the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver, Canada, Dec 08-14, 2019.
arXiv.
[68]
E. Faerman, O. Voggenreiter, F. Borutta, T. Emrich, M. Berrendorf and M. Schubert.
Graph Alignment Networks with Node Matching Scores.
Workshop on Graph Representation Learning at the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Vancouver, Canada, Dec 08-14, 2019.
PDF.
[67]
M. Binder, J. Moosbauer, J. Thomas and B. Bischl.
Multi-Objective Hyperparameter Tuning and Feature Selection using Filter Ensembles.
Preprint at arXiv (Dec. 2019).
arXiv.
[66]
M. Lang, M. Binder, J. Richter, P. Schratz, F. Pfisterer, S. Coors, Q. A. Q. A., G. Casalicchio, L. Kotthoff and B. Bischl.
mlr3: A modern object-oriented machine learning framework in R.
The Journal of Open Source Software 4.44 (Dec. 2019).
DOI.
[65]
D. Mautz, C. Plant and C. Böhm.
Deep Embedded Cluster Tree.
19th IEEE International Conference on Data Mining (ICDM 2019). Beijing, China, Nov 08-11, 2019.
DOI.
[64]
E. Faerman, M. Rogalla, N. Strauß, A. Krüger, B. Blümel, M. Berrendorf, M. Fromm and M. Schubert.
Spatial Interpolation with Message Passing Framework.
IEEE International Conference on Data Mining Workshops (ICDMW 2019). Beijing, China, Nov 08-11, 2019.
DOI.
[63]
M. Fromm, M. Berrendorf, E. Faerman, Y. Chen, B. Schüss and M. Schubert.
XD-STOD: Cross-Domain Superresolution for Tiny Object Detection.
IEEE International Conference on Data Mining Workshops (ICDMW 2019). Beijing, China, Nov 08-11, 2019.
DOI.
[62]
F. Lüer, D. Mautz and C. Böhm.
Anomaly Detection in Time Series using Generative Adversarial Networks.
IEEE International Conference on Data Mining Workshops (ICDMW 2019). Beijing, China, Nov 08-11, 2019.
DOI.
[61]
F. Borutta, S. Schmoll and S. Friedl.
Optimizing the Spatio-Temporal Resource Search Problem with Reinforcement Learning.
27th International Conference on Advances in Geographic Information Systems (SIGSPATIAL 2019). Chicago, ILL, USA, Nov 05-08, 2019.
DOI.
[60]
S. Kevork and G. Kauermann.
Iterative Estimation of Mixed Exponential Random Graph Models with Nodal Random Effects.
Preprint at arXiv (Nov. 2019).
arXiv.
[59]
F. Pfisterer, L. Beggel, X. Sun, F. Scheipl and B. Bischl.
Benchmarking time series classification -- Functional data vs machine learning approaches.
Preprint at arXiv (Nov. 2019).
arXiv.
[58]
F. Pfisterer, J. Thomas and B. Bischl.
Towards Human Centered AutoML.
Preprint at arXiv (Nov. 2019).
arXiv.
[57]
P. Bergmann, T. Meinhardt and L. Leal-Taixé.
Tracking without bells and whistles.
IEEE/CVF International Conference on Computer Vision (ICCV 2019). Seoul, Korea, Oct 27-Nov 02, 2019.
DOI.
[56]
M. Moeller, T. Möllenhoff and D. Cremers.
Controlling Neural Networks via Energy Dissipation.
IEEE/CVF International Conference on Computer Vision (ICCV 2019). Seoul, Korea, Oct 27-Nov 02, 2019.
DOI.
[55]
A. Markham and M. Grosse-Wentrup.
A Causal Semantics for the Edge Clique Cover Problem.
Workshop on Graphical Models: Conditional Independence and Algebraic Structures. TUM, Munich, Germany, Oct 23-25, 2019.
URL.
[54]
G. König and M. Grosse-Wentrup.
A Causal Perspective on Challenges for AI in Precision Medicine.
2nd International Congress on Precision Medicine (PMBC 2019). Munich, Germany, Oct 14-15, 2019.
[53]
F. Borutta, J. Busch, E. Faerman, A. Klink and M. Schubert.
Structural Graph Representations based on Multiscale Local Network Topologies.
IEEE/WIC/ACM International Conference on Web Intelligence (WI 2019). Thessaloniki, Greece, Oct 14-17, 2019.
DOI.
[52]
A. Beer, J. Lauterbach and T. Seidl.
MORe++: k-Means Based Outlier Removal on High-Dimensional Data.
12th International Conference on Similarity Search and Applications (SISAP 2019). Newark, New York, USA, Oct 02-04, 2019.
DOI.
[51]
M. Berrendorf, F. Borutta and P. Kröger.
k-Distance Approximation for Memory-Efficient RkNN Retrieval.
12th International Conference on Similarity Search and Applications (SISAP 2019). Newark, New York, USA, Oct 02-04, 2019.
DOI.
[50]
F. Borutta, P. Kröger and T. Hubauer.
A Generic Summary Structure for Arbitrarily Oriented Subspace Clustering in Data Streams.
12th International Conference on Similarity Search and Applications (SISAP 2019). Newark, New York, USA, Oct 02-04, 2019.
DOI.
[49]
D. Kazempour, M. Hünemörder and T. Seidl.
On coMADs and Principal Component Analysis.
12th International Conference on Similarity Search and Applications (SISAP 2019). Newark, New York, USA, Oct 02-04, 2019.
DOI.
[48]
D. Kazempour and T. Seidl.
On coMADs and Principal Component Analysis.
12th International Conference on Similarity Search and Applications (SISAP 2019). Newark, New York, USA, Oct 02-04, 2019.
DOI.
[47]
L. Della Libera, V. Golkov, Y. Zhu, A. Mielke and D. Cremers.
Deep Learning for 2D and 3D Rotatable Data: An Overview of Methods.
Preprint at arXiv (Oct. 2019).
arXiv.
[46]
A. Beer, N. S. Schüler and T. Seidl.
A Generator for Subspace Clusters.
Conference on Lernen. Wissen. Daten. Analysen (LWDA 2019). Berlin, Germany, Sep 30-Oct 02, 2019.
PDF.
[45]
M. Hunemörder, D. Kazempour, A. Beer and T. Seidl.
CODEC - Detecting Linear Correlations in Dense Clusters with Comedian-based PCA.
Conference on Lernen. Wissen. Daten. Analysen (LWDA 2019). Berlin, Germany, Sep 30-Oct 02, 2019.
PDF.
[44]
D. Kazempour, A. Beer, O. Schrüfer and T. Seidl.
Clustering Trend Data Time-Series through Segmentation of FFT-decomposed Signal Constituents.
Conference on Lernen. Wissen. Daten. Analysen (LWDA 2019). Berlin, Germany, Sep 30-Oct 02, 2019.
PDF.
[43]
D. Kazempour, L. M. Yan and T. Seidl.
From Covariance to Comode in context of Principal Component Analysis.
Conference on Lernen. Wissen. Daten. Analysen (LWDA 2019). Berlin, Germany, Sep 30-Oct 02, 2019.
PDF.
[42]
L. Beggel, M. Pfeiffer and B. Bischl.
Robust Anomaly Detection in Images Using Adversarial Autoencoders.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2019). Wuerzburg, Germany, Sep 16-20, 2019.
DOI.
[41]
J. Goschenhofer, F. M. J. Pfister, K. A. Yuksel, B. Bischl, U. Fietzek and J. Thomas.
Wearable-based Parkinson's Disease Severity Monitoring using Deep Learning.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2019). Wuerzburg, Germany, Sep 16-20, 2019.
DOI.
[40]
C. Molnar, G. Casalicchio and B. Bischl.
Quantifying Model Complexity via Functional Decomposition for Better Post-hoc Interpretability.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2019). Wuerzburg, Germany, Sep 16-20, 2019.
DOI.
[39]
C. A. Scholbeck, C. Molnar, C. Heumann, B. Bischl and G. Casalicchio.
Sampling, Intervention, Prediction, Aggregation: A Generalized Framework for Model Agnostic Interpretations.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2019). Wuerzburg, Germany, Sep 16-20, 2019.
DOI.
[38]
X. Sun, J. Lin and B. Bischl.
ReinBo: Machine Learning Pipeline Conditional Hierarchy Search and Configuration with Bayesian Optimization Embedded Reinforcement Learning.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2019). Wuerzburg, Germany, Sep 16-20, 2019.
DOI.
[37]
F. Pfisterer, S. Coors, J. Thomas and B. Bischl.
Multi-Objective Automatic Machine Learning with AutoxgboostMC.
Workshops of the European Conference on Machine Learning and Knowledge Discovery in Databases (Workshops ECML-PKDD 2019). Wuerzburg, Germany, Sep 16-20, 2019.
arXiv.
[36]
X. Sun, A. Bommert, F. Pfisterer, J. Rahenfürher, M. Lang and B. Bischl.
High dimensional restrictive federated model selection with multi-objective bayesian optimization over shifted distributions.
Intelligent Systems Conference 2019 (IntelliSys 2019). London, UK, Sep 05-06, 2019.
DOI.
[35]
J. Held, A. Beer and T. Seidl.
Chain-detection Between Clusters.
Datenbank-Spektrum 19 (Sep. 2019).
DOI.
[34]
S. Schmoll, S. Friedl and M. Schubert.
Scaling the Dynamic Resource Routing Problem.
16th International Symposium on Spatial and Temporal Databases (SSTD 2019). Vienna, Austria, Aug 19-21, 2019.
DOI.
[33]
P. Gijsbers, E. LeDell, Thomas, S. Poirier, B. Bischl and J. Vanschoren.
An Open Source AutoML Benchmark.
6th Workshop on Automated Machine Learning (AutoML 2019) co-located with KDD 2019. Anchorage, AK, USA, Aug 05, 2019.
PDF.
[32]
A. Beer, D. Kazempour, M. Baur and T. Seidl.
Human Learning in Data Science (Poster Extended Abstract).
21st International Conference of Human-Computer Interaction (HCII 2019). Orlando, Florida, USA, Jul 26-31, 2019.
DOI.
[31]
D. Kazempour, A. Beer and T. Seidl.
Data on RAILs: On interactive generation of artificial linear correlated data (Poster Extended Abstract).
21st International Conference of Human-Computer Interaction (HCII 2019). Orlando, Florida, USA, Jul 26-31, 2019.
DOI.
[30]
A. Beer, D. Kazempour, L. Stephan and T. Seidl.
LUCK - Linear Correlation Clustering Using Cluster Algorithms and a kNN based Distance Function (short paper).
31st International Conference on Scientific and Statistical Database Management (SSDBM 2019). Santa Cruz, CA, USA, Jul 23-25, 2019.
DOI.
[29]
A. Beer and T. Seidl.
Graph Ordering and Clustering - A Circular Approach.
31st International Conference on Scientific and Statistical Database Management (SSDBM 2019). Santa Cruz, CA, USA, Jul 23-25, 2019.
DOI.
[28]
D. Kazempour, K. Emmerig, P. Kröger and T. Seidl.
Detecting Global Periodic Correlated Clusters in Event Series based on Parameter Space Transform.
31st International Conference on Scientific and Statistical Database Management (SSDBM 2019). Santa Cruz, CA, USA, Jul 23-25, 2019.
DOI.
[27]
D. Kazempour and T. Seidl.
On systematic hyperparameter analysis through the example of subspace clustering.
31st International Conference on Scientific and Statistical Database Management (SSDBM 2019). Santa Cruz, CA, USA, Jul 23-25, 2019.
DOI.
[26]
M. Lotfollahi, F. A. Wolf and F. J. Theis.
scGen predicts single-cell perturbation responses.
Nature Methods 16.8 (Jul. 2019).
DOI.
[25]
M. Perdacher, C. Plant and C. Böhm.
Cache-oblivious High-performance Similarity Join.
ACM SIGMOD/PODS International Conference on Management of Data (SIGMOD 2019). Amsterdam, Netherlands, Jun 30-Jul 05, 2019.
DOI.
[24]
A. Bojchevski and S. Günnemann.
Adversarial Attacks on Node Embeddings via Graph Poisoning.
36th International Conference on Machine Learning (ICML 2019). Long Beach, CA, USA, Jun 09-15, 2019.
URL.
[23]
J. Schuchardt, V. Golkov and D. Cremers.
Learning to Evolve.
Preprint at arXiv (May. 2019).
arXiv.
[22]
Q. Au, D. Schalk, G. Casalicchio, R. Schoedel, C. Stachl and B. Bischl.
Component-Wise Boosting of Targets for Multi-Output Prediction.
Preprint at arXiv (Apr. 2019).
arXiv.
[21]
A. Beer, D. Kazempour and T. Seidl.
Rock - Let the points roam to their clusters themselves.
22nd International Conference on Extending Database Technology (EDBT 2019). Lisbon, Portugal, Mar 26-29, 2019.
PDF.
[20]
D. Kazempour, L. Krombholz, P. Kröger and T. Seidl.
A Galaxy of Correlations - Detecting Linear Correlated Clusters through k-Tuples Sampling using Parameter Space Transform.
22nd International Conference on Extending Database Technology (EDBT 2019). Lisbon, Portugal, Mar 26-29, 2019.
PDF.
[19]
D. Kazempour and T. Seidl.
Insights into a running clockwork: On interactive process-aware clustering.
22nd International Conference on Extending Database Technology (EDBT 2019). Lisbon, Portugal, Mar 26-29, 2019.
PDF.
[18]
J. Held, A. Beer and T. Seidl.
Chain-detection for DBSCAN.
18th Symposium of Database Systems for Business, Technology and Web (BTW 2019). Rostock, Germany, Mar 04-08, 2019.
DOI.
[17]
D. Kazempour, M. Kazakov, P. Kröger and T. Seidl.
DICE: Density-based Interactive Clustering and Exploration.
18th Symposium of Database Systems for Business, Technology and Web (BTW 2019). Rostock, Germany, Mar 04-08, 2019.
DOI.
[16]
F. A. Wolf, F. K. Hamey, M. Plass, J. Solana, J. Dahlin, B. Göttgens, N. Rajewsky, L. Simon and F. J. Theis.
PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells.
Genome Biology 20.59 (Mar. 2019).
DOI.
[15]
P. Probst, A.-L. Boulesteix and B. Bischl.
Tunability: Importance of Hyperparameters of Machine Learning Algorithms.
Journal of Machine Learning Research 20 (Mar. 2019).
PDF.
[14]
Y. Shen, T. Wu, C. Domokos and D. Cremers.
Probabilistic Discriminative Learning with Layered Graphical Models.
Preprint at arXiv (Feb. 2019).
arXiv.
[13]
C. Happ, F. Scheipl, A. A. Gabriel and S. Greven.
A general framework for multivariate functional principal component analysis of amplitude and phase variation.
Stat 8.2 (Feb. 2019).
DOI.
[12]
M. Binder, S. Dandl and J. Moosbauer.
mosmafs: Multi-Objective Simultaneous Model and Feature Selection. R package.
2019.
GitHub.
[11]
J. Goldsmith, F. Scheipl, L. Huang, J. Wrobel, C. Di, J. Gellar, J. Harezlak, M. W. McLean, B. Swihart, L. Xiao, C. Crainiceanu and P. T. Reiss.
refund: Regression with Functional Data.
2019.
URL.
[10]
P. Probst, M. Wright and A.-L. Boulesteix.
Hyperparameters and Tuning Strategies for Random Forest.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9.3 (Jan. 2019).
DOI.
2018
[9]
J. N. van Rijn, F. Pfisterer, J. Thomas, A. Muller, B. Bischl and J. Vanschoren.
Meta learning for defaults: Symbolic defaults.
Workshop on Meta-Learning (MetaLearn 2018) at the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018). Montréal, Canada, Dec 03-08, 2018.
PDF.
[8]
M. Lotfollahi, F. A. Wolf and F. J. Theis.
Generative Modeling and Latent Space Arithmetics Predict Single-Cell Perturbation Response across Cell Types, Studies and Species.
Preprint at bioRxiv (Dec. 2018).
DOI.
[7]
J. Minkwitz, F. Scheipl, E. Binder, C. Sander, U. Hegerl and H. Himmerich.
Generalised functional additive models for brain arousal state dynamics (Poster).
20th International Pharmaco-EEG Society for Preclinical and Clinical Electrophysiological Brain Research Meeting (IPEG 2018). Zurich, Switzerland, Nov 21-25, 2018.
DOI.
[6]
D. Schalk, J. Thomas and B. Bischl.
compboost: Modular Framework for Component-wise Boosting.
The Journal of Open Source Software 3.30 (Oct. 2018).
DOI.
[5]
G. Casalicchio, C. Molnar and B. Bischl.
Visualizing the feature importance for black box models.
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD 2018). Dublin, Ireland, Sep 10-14, 2018.
DOI.
[4]
J. Thomas, S. Coors and B. Bischl.
Automatic gradient boosting.
Preprint at arXiv (Jul. 2018).
arXiv.
[3]
D. Kühn, P. Probst, J. Thomas and B. Bischl.
Automatic Exploration of Machine Learning Experiments on OpenML.
Preprint at arXiv (Jun. 2018).
arXiv.
[2]
C. Molnar, G. Casalicchio and B. Bischl.
iml: An R package for interpretable machine learning.
The Journal of Open Source Software 3.26 (Jun. 2018).
DOI.
[1]
D. Rügamer, S. Brockhaus, K. Gentsch, K. Scherer and S. Greven.
Boosting factor-specific functional historical models for the detection of synchronization in bioelectrical signals.
Journal of the Royal Statistical Society. Series C (Applied Statistics) 67.3 (Mar. 2018).
DOI.