13

Jul

Teaser image to Challenges in modern statistical network analysis: Data collection and covariate effect assessments

Challenges in modern statistical network analysis: Data collection and covariate effect assessments

Cornelius Fritz, Pennsylvania State University

   13.07.2023

   4:15 pm - 5:45 pm

   LMU Department of Statistics and via zoom

Recent advances in statistical network analysis address challenges posed by network data, deviating from traditional regression models. This talk introduces durational event models for instantaneous and durable ties with time stamps, accommodating complexities like actor restrictions in simultaneous calls.


Related

Link to Privacy, Data Privacy, and Differential Privacy

Colloquium  •  16.07.2024  •  LMU Department of Statistics and via zoom

Privacy, Data Privacy, and Differential Privacy

Colloquium at the LMU Department of Statistics with James Bailie from Harvard University.


Link to Variational Learning for Large Deep Networks

Colloquium  •  10.07.2024  •  LMU Department of Statistics and via zoom

Variational Learning for Large Deep Networks

Colloquium at the LMU Department of Statistics with Thomas Möllenhoff from RIKEN, Tokyo.


Link to Can today’s intention to treat have a causal effect on tomorrow’s hazard function?

Colloquium  •  03.07.2024  •  LMU Department of Statistics and via zoom

Can today’s intention to treat have a causal effect on tomorrow’s hazard function?

Colloquium at the LMU Department of Statistics with Jan Beyersmann, University of Ulm.


Link to The Complexities of Differential Privacy for Survey Data

Colloquium  •  26.06.2024  •  LMU Department of Statistics and via zoom

The Complexities of Differential Privacy for Survey Data


Link to Resampling-based inference for the average treatment effect in observational studies with competing risks

Colloquium  •  19.06.2024  •  LMU Department of Statistics and via zoom

Resampling-based inference for the average treatment effect in observational studies with competing risks

This talk explores three resampling methods to construct valid confidence intervals and bands for treatment effect estimation in competing risks studies.