03

Jul

Teaser image to Can today’s intention to treat have a causal effect on tomorrow’s hazard function?

Colloquium

Can today’s intention to treat have a causal effect on tomorrow’s hazard function?

Jan Beyersmann, University of Ulm

   03.07.2024

   4:15 pm - 5:45 pm

   LMU Department of Statistics and via zoom

Hazards condition on previous survival, making them identifiable with censored data and key to survival analysis. However, this raises causal concerns. Post-randomization, effective treatments might help sicker patients survive longer, causing dependence between treatment intention and sickness markers, known as "collider bias," which complicates detecting causal effects.

Jan Beyersmann argues that today's treatment intention affects future hazard function causally. He suggests that "collider bias" should be termed "collider effect" and is less relevant to time-to-event data. He believes hazard ratios should be translated into probabilities to understand treatment effects better, though nuances might be lost.

Beyersmann illustrates this with an example from a German benefit-risk assessment where censoring was not fully considered, leading to misleading safety claims. He also discusses using a multistate model in a phase 3 lung cancer trial, where the FDA temporarily halted the experimental treatment. The goal was to estimate survival distributions assuming no clinical hold, despite the challenge of non-independent times to clinical hold and death.

Organized by:

Department of Statistics LMU Munich


Related

Link to Active learning-assisted neutron spectroscopy with log-Gaussian processes

Colloquium  •  08.11.2023  •  LMU Department of Statistics and via zoom

Active learning-assisted neutron spectroscopy with log-Gaussian processes

Join the lecture with Mario Teixeira Parente, Department of Statistics, LMU Munich.


Link to Applied Causal Inference with Surrogate Representation

AI Keynote Series  •  20.07.2023  •  LMU Institute of AI in Management via zoom

Applied Causal Inference with Surrogate Representation

Join the presentation of Lu Cheng, University of Illinois, Chicago.


Link to Assessing goodness of fit for network models

Colloquium  •  15.02.2023  •  LMU Department of Statistics and via zoom

Assessing goodness of fit for network models

Join the presentation of Gesine Reinert, University of Oxford, on network models.


Link to Auditing Fairness under Unobserved Confounding

AI Keynote Series  •  08.08.2024  •  Online via Zoom

Auditing Fairness under Unobserved Confounding

Join the lecture with Michael Oberst from Johns Hopkins University.


Link to AutoML for tabular datasets and tabular datasets for AutoML

Colloquium  •  06.12.2023  •  LMU Department of Statistics and via zoom

AutoML for tabular datasets and tabular datasets for AutoML

Join the lecture with our PI Matthias Feurer, LMU Munich, giving a short introduction into AutoML and an overview of the AutoML research at his chair.