19

Jun

Teaser image to Resampling-based inference for the average treatment effect in observational studies with competing risks

Resampling-based inference for the average treatment effect in observational studies with competing risks

Sarah Friedrich, Universität Augsburg

   19.06.2024

   4:15 pm - 5:45 pm

   LMU Department of Statistics and via zoom

In observational studies with time-to-event outcomes subject to competing risks, the g-formula can be used to estimate a treatment effect in the presence of confounding factors. The construction of valid pointwise confidence intervals and time-simultaneous confidence bands for the causal risk difference, however, is complicated. A convenient solution is to approximate the asymptotic distribution of the corresponding stochastic process by means of resampling approaches.

In this talk, we consider three different resampling methods, namely the classical nonparametric bootstrap, the influence function equipped with a resampling approach as well as a martingale-based bootstrap version, the so-called wild bootstrap. We compare these approaches with regard to asymptotic properties and based on simulation studies and demonstrate their usage in a data example.


Related

Link to Privacy, Data Privacy, and Differential Privacy

Colloquium  •  16.07.2024  •  LMU Department of Statistics and via zoom

Privacy, Data Privacy, and Differential Privacy

Colloquium at the LMU Department of Statistics with James Bailie from Harvard University.


Link to Variational Learning for Large Deep Networks

Colloquium  •  10.07.2024  •  LMU Department of Statistics and via zoom

Variational Learning for Large Deep Networks

Colloquium at the LMU Department of Statistics with Thomas Möllenhoff from RIKEN, Tokyo.


Link to Can today’s intention to treat have a causal effect on tomorrow’s hazard function?

Colloquium  •  03.07.2024  •  LMU Department of Statistics and via zoom

Can today’s intention to treat have a causal effect on tomorrow’s hazard function?

Colloquium at the LMU Department of Statistics with Jan Beyersmann, University of Ulm.


Link to The Complexities of Differential Privacy for Survey Data

Colloquium  •  26.06.2024  •  LMU Department of Statistics and via zoom

The Complexities of Differential Privacy for Survey Data


Link to Multiverse Analysis: On the Robustness of Functional Form and Data Pre-Processing
Decisions

Colloquium  •  05.06.2024  •  LMU Department of Statistics and via zoom

Multiverse Analysis: On the Robustness of Functional Form and Data Pre-Processing Decisions