09

Feb

Teaser image to Electricity load forecasting using the Temporal Fusion Transformer

Electricity load forecasting using the Temporal Fusion Transformer

Konstantin Hopf, University of Bamberg

   09.02.2023

   12:00 pm - 1:30 pm

   LMU Institute of AI in Management via zoom

The energy transition's challenges demand precise load forecasts for distribution grids. This study assesses the Temporal Fusion Transformer (TFT) performance in short-term electricity load forecasting.


Related

Link to Auditing Fairness under Unobserved Confounding

AI Keynote Series  •  08.08.2024  •  Online via Zoom

Auditing Fairness under Unobserved Confounding

Join the lecture with Michael Oberst from Johns Hopkins University.


Link to Representation Learning: A Causal Perspective

AI Keynote Series  •  18.07.2024  •  Online via Zoom

Representation Learning: A Causal Perspective

Lecture with Yixin Wang from University of Michigan, applying causal insights to create clear, efficient representations using counterfactuals.


Link to Interpretable prediction with missing values

AI Keynote Series  •  06.06.2024  •  Online via Zoom

Interpretable prediction with missing values

Missing values in healthcare data hinder interpretability and predictions. Fredrik Johansson's talk presents two solutions and suggests future research directions.


Link to Innovating AI Products for Social Good 
in the Age of Foundational Models

AI Keynote Series  •  23.05.2024  •  Online via Zoom

Innovating AI Products for Social Good in the Age of Foundational Models

Professor Qian Yang explores how LLMs necessitate considering societal impacts and innovating for social good in education and mental healthcare.


Link to Causal Scoring: A Framework for Effect Estimation, Effect Ordering, and Effect Classification

AI Keynote Series  •  08.02.2024  •  LMU Institute of AI in Management via zoom

Causal Scoring: A Framework for Effect Estimation, Effect Ordering, and Effect Classification

The presentation introduces causal scoring for decision-making, with interpretations.