06

Jun

Teaser image to Interpretable prediction with missing values

AI Keynote Series

Interpretable Prediction With Missing Values

Fredrik Johansson, Chalmers University of Technology

   06.06.2024

   12:00 pm - 1:30 pm

   Online via Zoom

Missing values plague many application domains of machine learning, both in training data and in deployment. Healthcare is just one example—patient records are notorious for omissions of important variables and collecting them during clinical practice can be costly and time consuming. Healthcare also tends to demand interpretability so that predictions can be quickly calculated and justified, often using rule-based risk scores. Surprisingly, prediction with missing values and interpretability are largely incompatible using classical methods. Imputation obfuscates predictions and algorithms designed for interpretability typically have no native handling of prediction with missing values. In this talk, I will introduce two solutions to this problem, suitable under different conditions, and propose directions for future work.

Organized by:

LMU Munich, Institute of AI in Management


Related

Link to Simplifying Debiased Inference via Automatic Differentiation and Probabilistic Programming

AI Keynote Series  •  13.02.2025  •  Online via Zoom

Simplifying Debiased Inference via Automatic Differentiation and Probabilistic Programming

13.02.25, 10-11:30 am: AI Keynote Series with Alex Luedtke from the University of Washington.


Link to A Novel Statistical Approach to Analyze Image Classification

Colloquium  •  29.01.2025  •  LMU Department of Statistics and via zoom

A Novel Statistical Approach to Analyze Image Classification

29.01.25, 4-6 pm: LMU Statistics Colloquium with Sophie Langer (U Twente) on faster, structured CNN-based image classification.


Link to Additive Density-on-Scalar Regression in Bayes Hilbert Spaces with an Application to Gender Economics

Colloquium  •  15.01.2025  •  LMU Department of Statistics and via zoom

Additive Density-on-Scalar Regression in Bayes Hilbert Spaces With an Application to Gender Economics

15.01.25, 4-6 pm: LMU Statistics Colloquium with Sonja Greven (HU Berlin) introducing a novel approach to modeling densities.