Home  | Research | Groups | Daniel Rückert

Research Group Daniel Rückert


Daniel Rückert

is Alexander von Humboldt Professor for AI in Medicine and Healthcare at TU Munich. He is also a Professor at Imperial College London.

He gained a MSc from Technical University Berlin in 1993, a PhD from Imperial College in 1997, followed by a post-doc at King’s College London. In 1999 he joined Imperial College as a Lecturer, becoming Senior Lecturer in 2003 and full Professor in 2005. From 2016 to 2020 he served as Head of the Department of Computing at Imperial College. His field of research is the area of Artificial Intelligence and Machine Learning and their application to medicine and healthcare. In 2025, he received Germany’s highest research honor, the prestigious Gottfried Wilhelm Leibniz Prize for his groundbreaking work in AI-assisted medical imaging.

Team members @MCML

PostDocs

Link to website

Raphael Rehms

Dr.

Thomas Bayes Fellow

Link to website

Julian Suk

Dr.

PhD Students

Link to website

Varma Aswathi

Link to website

Niklas Bubeck

Link to website

Laurin Lux

Link to website

David Mildenberger

Link to website

Nil Stolt-Ansó

Link to website

Reihaneh Torkzadehmahani

Link to website

Clara Sophie Vetter

Recent News @MCML

Link to MCML at MICCAI 2025

MCML at MICCAI 2025

Link to AI for Personalized Psychiatry - With Researcher Clara Vetter

01.09.2025

AI for Personalized Psychiatry - With Researcher Clara Vetter

Link to AI Research by Daniel Rückert Improves Medical Imaging and Data Privacy

29.07.2025

AI Research by Daniel Rückert Improves Medical Imaging and Data Privacy

Link to MCML at CVPR 2025

MCML at CVPR 2025

Link to Daniel Rückert Elected Fellow of the Royal Society

04.06.2025

Daniel Rückert Elected Fellow of the Royal Society

Publications @MCML

2025


[82]
V. Biller • L. Zimmer • C. Erdur • S. NagarD. RückertN. BubeckJ. Weidner
A Biophysically-Conditioned Generative Framework for 3D Brain Tumor MRI Synthesis.
Preprint (Oct. 2025). arXiv GitHub

[81]
A. C. Erdur • D. Scholz • J. A. Buchner • D. Bernhardt • S. E. Combs • B. WiestlerD. Rückert • J. C. Peeken
Independent Benchmarking of Prompt-Based Medical Segmentation Models.
Preprint (Oct. 2025). DOI

[80]
L. Kreitner • P. Hager • J. Mengedoht • G. Kaissis • D. RückertM. J. Menten
Efficient numeracy in language models through single-token number embeddings.
Preprint (Oct. 2025). arXiv

[79]
V. Sideri-Lampretsa • D. Rückert • H. Qiu
Evaluation of Deformable Image Registration Under Alignment-Regularity Trade-Off.
BRIDGE @MICCAI 2025 - Workshop on Bridging Regulatory Science and Medical AI at 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI GitHub

[78]
J. Weidner • I. Ezhov • M. Balcerak • A. Datchev • L. Zimmer • D. Rückert • B. Menze • B. Wiestler
From Fiber Tracts to Tumor Spread: Biophysical Modeling of Butterfly Glioma Growth Using Diffusion Tensor Imaging.
CDMRI @MICCAI 2025 - Workshop on Computational Diffusion MRI at 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. To be published. Preprint available. arXiv

[77]
M. Hartenberger • H. Ayaz • F. Ozlugedik • C. Caredda • L. Giannoni • F. Lange • L. LuxJ. Weidner • A. Berger • F. Kofler • M. J. Menten • B. Montcel • I. Tachtsidis • D. Rückert • I. Ezhov
Redefining spectral unmixing for in-vivo brain tissue analysis from hyperspectral imaging.
CMMCA @MICCAI 2025 - Workshop on Computational Mathematics Modeling in Cancer Analysis at 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[76]
J. Weidner • M. Balcerak • I. Ezhov • A. Datchev • L. Lux • L. Zimmer • D. Rückert • B. Menze • B. Wiestler
A Lightweight Optimization Framework for Estimating 3D Brain Tumor Infiltration.
CMMCA @MICCAI 2025 - Workshop on Computational Mathematics Modeling in Cancer Analysis at 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[75]
N. Bubeck • Y. Zhang • S. Shit • D. Rückert • J. Pan
Reconstruct or Generate: Exploring the Spectrum of Generative Modeling for Cardiac MRI.
DGM4 @MICCAI 2025 - 5th Deep Generative Models Workshop at 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[74] A Conference
M. Dannecker • D. Rückert
Predicting Longitudinal Brain Development via Implicit Neural Representations.
MICCAI 2025 - 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[73] A Conference
D. Scholz • A. C. Erdur • V. Ehm • A. Meyer-Baese • J. C. Peeken • D. RückertB. Wiestler
MM-DINOv2: Adapting Foundation Models for Multi-Modal Medical Image Analysis.
MICCAI 2025 - 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[72] A Conference
D. Scholz • A. C. Erdur • R. Holland • V. Ehm • J. C. Peeken • B. WiestlerD. Rückert
Contrastive Anatomy-Contrast Disentanglement: A Domain-General MRI Harmonization Method.
MICCAI 2025 - 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[71] A Conference
A. Selivanov • P. Müller • Ö. Turgut • N. Stolt-AnsóD. Rückert
Global and Local Contrastive Learning for Joint Representations from Cardiac MRI and ECG.
MICCAI 2025 - 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI GitHub

[70] A Conference
T. Susetzky • H. Qiu1 • R. Braren • D. Rückert
A Holistic Time-Aware Classification Model for Multimodal Longitudinal Patient Data.
MICCAI 2025 - 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI GitHub

[69]
B. Bulut • M. Dannecker • T. Sanchez • S. N. Silva • V. Zalevskyi • S. Jia • J.-B. Ledoux • G. Auzias • F. Rousseau • J. Hutter • D. Rückert • M. Bach Cuadra
Physics-Informed Joint Multi-TE Super-Resolution with Implicit Neural Representation for Robust Fetal T2 Mapping.
PIPPI @MICCAI 2025 - 10th Workshop in Perinatal, Preterm and Paediatric Image Analysis at the 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[68]
A. F. Dima • S. Shit • H. Qiu • R. Holland • T. T. Mueller • F. Musio • K. Yang • B. Menze • R. Braren • M. R. Makowski • D. Rückert
Parametric shape models for vessels learned from segmentations via differentiable voxelization.
ShapeMI @MICCAI 2025 - Workshop on Shape in Medical Imaging at the 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[67]
J. Suk • J. J. Wentzel • P. Rygiel • J. Daemen • D. Rückert • J. M. Wolterink
GReAT: leveraging geometric artery data to improve wall shear stress assessment.
ShapeMI @MICCAI 2025 - Workshop on Shape in Medical Imaging at the 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[66]
A. C. Erdur • C. Beischl • D. Scholz • J. Pan • B. WiestlerD. Rückert • J. C. Peeken
MultiMAE for Brain MRIs: Robustness to Missing Inputs Using Multi-Modal Masked Autoencoder.
Preprint (Sep. 2025). arXiv

[65]
C. Liu • Y. Chen • H. Shi • J. Lu • B. Jian • J. Pan • L. Cai • J. Wang • Y. Zhang • J. LiC. I. Bercea • C. Ouyang • C. Chen • Z. Xiong • B. WiestlerC. WachingerD. Rückert • W. Bai • R. Arcucci
Does DINOv3 Set a New Medical Vision Standard?
Preprint (Sep. 2025). arXiv

[64] Top Journal
S. Starck • V. Sideri-Lampretsa • B. Kainz • M. J. Menten • T. T. Mueller • D. Rückert
Diff-Def: Diffusion-Generated Deformation Fields for Conditional Atlases.
IEEE Transactions on Medical Imaging Early Access. Aug. 2025. DOI

[63] Top Journal
F. Drexel • V. Sideri-Lampretsa • H. Bast • A. W. Marka • T. Koehler • F. T. Gassert • D. Pfeiffer • D. Rückert • F. Pfeiffer
Deformable image registration of dark-field chest radiographs for functional lung assessment.
Medical Physics 52.8. Aug. 2025. DOI

[62] Top Journal
R. Holland • T. R. P. Taylor • C. Holmes • S. Riedl • J. Mai • M. Patsiamanidi • D. Mitsopoulou • P. Hager • P. Müller • J. C. Paetzold • H. P. N. Scholl • H. Bogunović • U. Schmidt-Erfurth • D. Rückert • S. Sivaprasad • A. J. Lotery • M. J. Menten • O. b. o. t. PINNACLE consortium
Specialized curricula for training vision language models in retinal image analysis.
npj Digital Medicine 8.532. Aug. 2025. DOI

[61]
N. Bubeck • S. Shit • C. Chen • C. Zhao • P. Guo • D. Yang • G. Zitzlsberger • D. Xu • B. Kainz • D. Rückert • J. Pan
Latent Interpolation Learning Using Diffusion Models for Cardiac Volume Reconstruction.
Preprint (Aug. 2025). arXiv

[60]
T. Mach • D. Rückert • A. Berger • L. Lux • I. Ezhov
Addressing Annotation Scarcity in Hyperspectral Brain Image Segmentation with Unsupervised Domain Adaptation.
Preprint (Aug. 2025). arXiv

[59]
J. Pan • B. Jian • P. Hager • Y. Zhang • C. Liu • F. Jungmann • H. B. Li • C. You • J. Wu • J. Zhu • F. Liu • Y. Liu • N. BubeckC. Wachinger • C. Chen • Z. Gong • C. Ouyang • G. Kaissis • B. WiestlerD. Rückert
Beyond Benchmarks: Dynamic, Automatic And Systematic Red-Teaming Agents For Trustworthy Medical Language Models.
Preprint (Aug. 2025). arXiv

[58]
K. Yang • F. Musio • Y. Ma • N. Juchler • J. C. Paetzold • R. Al-Maskari • L. Höher • H. B. Li • I. E. Hamamci • A. Sekuboyina • S. Shit • H. Huang • C. Prabhakar • E. de la Rosa • B. Wittmann • D. Waldmannstetter • F. Kofler • F. Navarro • M. J. Menten • I. Ezhov • D. Rückert • I. N. Vos • Y. M. Ruigrok • B. K. Velthuis • H. J. Kuijf • P. Shi • W. Liu • T. Ma • M. R. Rokuss • Y. Kirchhoff • F. Isensee • K. Maier-Hein • C. Zhu • H. Zhao • P. Bijlenga • J. Hämmerli • C. Wurster • L. Westphal • J. Bisschop • E. Colombo • H. Baazaoui • H.-L. Handelsmann • A. Makmur • J. Hallinan • A. Soundararajan • B. Wiestler • J. S. Kirschke • R. Wiest • E. Montagnon • L. Letourneau-Guillon • K. Oh • D. Lee • A. Hilbert • O. U. Aydin • D. Rallios • J. Rieger • S. Tanioka • A. Koch • D. Frey • A. Qayyum • M. Mazher • S. Niederer • N. Disch • J. Holzschuh • D. LaBella • F. Galati • D. Falcetta • M. A. Zuluaga • C. Lin • H. Zhao • Z. Zhang • M. Zhang • X. You • H. Zhang • G.-Z. Yang • Y. Gu • S. Ra • J. Hwang • H. Park • J. Chen • M. Wodzinski • H. Müller • N. Mansouri • F. Autrusseau • C. Yalçin • R. E. Hamadache • C. Lisazo • J. Salvi • A. Casamitjana • X. Lladó • U. M. Lal-Trehan Estrada • V. Abramova • L. Giancardo • A. Oliver • P. Casademunt • A. Galdran • M. Delucchi • J. Liu • H. Huang • Y. Cui • Z. Lin • Y. Liu • S. Zhu • T. R. Patel • A. H. Siddiqui • V. M. Tutino • M. Orouskhani • H. Wang • M. Mossa-Basha • Y. Sato • S. Hirsch • S. Wegener • B. Menze
Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical Segmentation of the Circle of Willis for CTA and MRA.
Preprint (Jul. 2025). arXiv

[57] A* Conference
D. Mildenberger • P. Hager • D. RückertM. J. Menten
A Tale of Two Classes: Adapting Supervised Contrastive Learning to Binary Imbalanced Datasets.
CVPR 2025 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA, Jun 11-15, 2025. DOI

[56]
J. Kaiser • J. Eigenmann • D. Rückert • G. Kaissis
User-Level Differential Privacy in Medical Machine Learning.
TPDP 2025 - Workshop on Theory and Practice of Differential Privacy. Google, Mountain View, CA, USA, Jun 02-03, 2025. PDF

[55] Top Journal
C. S. Vetter • A. Bender • D. B. Dwyer • M. Montembeault • A. Ruef • K. Chrisholm • L. Kambeitz-Ilankovic • L. A. Antonucci • S. Ruhrmann • J. Kambeitz • M. Lichtenstein • A. Riecher • R. Upthegrove • R. K. R. Salokangas • J. Hietala • C. Pantelis • R. Lencer • E. Meisenzahl • S. Wood • P. Brambilla • S. Borgwardt • P. Falkai • A. Bertolino • N. Koutsouleris •  PRONIA Consortium
Exploring the Predictive Value of Structural Covariance Networks for the Diagnosis of Schizophrenia.
Frontiers in Psychiatry 16. Jun. 2025. DOI

[54]
C. J. Mertens • H. Häntze • S. Ziegelmayer • J. N. Kather • D. Truhn • S. H. Kim • F. Busch • D. Weller • B. Wiestler • M. Graf • F. Bamberg • C. L. Schlett • J. B. Weiss • S. Ringhof • E. Can • J. Schulz-Menger • T. Niendorf • J. Lammert • I. Molwitz • A. Kader • A. Hering • A. Meddeb • J. Nawabi • M. B. Schulze • T. Keil • S. N. Willich • L. Krist • M. Hadamitzky • A. Hannemann • F. Bassermann • D. Rückert • T. Pischon • A. Hapfelmeier • M. R. Makowski • K. K. Bressem • L. C. Adams
Deep learning-enabled MRI phenotyping uncovers regional body composition heterogeneity and disease associations in two European population cohorts.
Preprint (Jun. 2025). DOI

[53]
A. H. Berger • L. LuxA. WeersM. J. MentenD. Rückert • J. C. Paetzold
Pitfalls of topology-aware image segmentation.
IPMI 2025 - Information Processing in Medical Imaging. Kos Island, Greece, May 25-30, 2025. DOI

[52]
S. Lockfisch • K. Schwethelm • M. J. Menten • R. Braren • D. Rückert • A. Ziller • G. Kaissis
On Arbitrary Predictions from Equally Valid Models.
Preprint (May. 2025). arXiv

[51] A* Conference
S. Dahan • G. Bénédict • L. Z. J. Williams • Y. Guo • D. Rückert • R. Leech • E. C. Robinson
SIM: Surface-based fMRI Analysis for Inter-Subject Multimodal Decoding from Movie-Watching Experiments.
ICLR 2025 - 13th International Conference on Learning Representations. Singapore, Apr 24-28, 2025. URL GitHub

[50] A* Conference
J. Kaiser • K. Schwethelm • D. RückertG. Kaissis
Laplace Sample Information: Data Informativeness Through a Bayesian Lens.
ICLR 2025 - 13th International Conference on Learning Representations. Singapore, Apr 24-28, 2025. URL

[49] A* Conference
L. Lux • A. H. Berger • A. WeersN. StuckiD. RückertU. Bauer • J. C. Paetzold
Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation.
ICLR 2025 - 13th International Conference on Learning Representations. Singapore, Apr 24-28, 2025. URL

[48] Top Journal
Ö. Turgut • P. Müller • P. Hager • S. Shit • S. Starck • M. J. Menten • E. Martens • D. Rückert
Unlocking the diagnostic potential of electrocardiograms through information transfer from cardiac magnetic resonance imaging.
Medical Image Analysis 101.103451. Apr. 2025. DOI GitHub

[47]
K. Schwethelm • J. Kaiser • M. Knolle • S. Lockfisch • D. Rückert • A. Ziller
Visual Privacy Auditing with Diffusion Models.
Transactions on Machine Learning Research. Mar. 2025. URL


[45]
A. Weers • A. H. Berger • L. LuxP. J. SchüfflerD. Rückert • J. C. Paetzold
From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis.
Preprint (Mar. 2025). arXiv GitHub

[44] A Conference
A. H. Berger • L. Lux • S. Shit • I. Ezhov • G. KaissisM. J. MentenD. Rückert • J. C. Paetzold
Cross-Domain and Cross-Dimension Learning for Image-to-Graph Transformers.
WACV 2025 - IEEE/CVF Winter Conference on Applications of Computer Vision. Tucson, AZ, USA, Feb 28-Mar 04, 2025. DOI

[43] Top Journal
C. I. BerceaB. WiestlerD. RückertJ. A. Schnabel
Evaluating normative representation learning in generative AI for robust anomaly detection in brain imaging.
Nature Communications 16.1624. Feb. 2025. DOI GitHub

[42]
Ö. Turgut • F. S. Bott • M. Ploner • D. Rückert
Are foundation models useful feature extractors for electroencephalography analysis?
Preprint (Feb. 2025). arXiv

[41]
F. Drexel • V. Sideri-Lampretsa • H. Bast • A. W. Marka • T. Koehler • F. T. Gassert • D. Pfeiffer • D. Rückert • F. Pfeiffer
Deformable Image Registration of Dark-Field Chest Radiographs for Local Lung Signal Change Assessment.
Preprint (Jan. 2025). arXiv

[40]
Z. Haouari • J. Weidner • I. Ezhov • A. Varma • D. Rückert • B. Menze • B. Wiestler
Efficient Deep Learning-based Forward Solvers for Brain Tumor Growth Models.
Preprint (Jan. 2025). arXiv

[39]
B. Jian • J. Pan • Y. LiF. Bongratz • R. Li • D. RückertB. WiestlerC. Wachinger
TimeFlow: Longitudinal Brain Image Registration and Aging Progression Analysis.
Preprint (Jan. 2025). arXiv

2024


[38]
A. Reithmeir • V. Spieker • V. Sideri-Lampretsa • D. RückertJ. A. Schnabel • V. A. Zimmer
From Model Based to Learned Regularization in Medical Image Registration: A Comprehensive Review.
Preprint (Dec. 2024). arXiv

[37]
M. Szép • D. Rückert • R. Eisenhart-Rothe • F. Hinterwimmer
A Practical Guide to Fine-tuning Language Models with Limited Data.
Preprint (Nov. 2024). arXiv

[36]
A. Riess • A. Ziller • S. Kolek • D. RückertJ. A. SchnabelG. Kaissis
Complex-Valued Federated Learning with Differential Privacy and MRI Applications.
DeCaF @MICCAI 2024 - 5th Workshop on Distributed, Collaborative and Federated Learning at the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. Marrakesh, Morocco, Oct 06-10, 2024. DOI

[35]
A. Banaszak • A. H. Berger • L. Lux • S. Shit • D. Rückert • J. C. Paetzold
Supervised Contrastive Learning for Image-to-Graph Transformers.
GRAIL @MICCAI 2024 - 6th Workshop on GRaphs in biomedicAl Image anaLysis at the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. Marrakesh, Morocco, Oct 06-10, 2024. DOI

[34]
L. Lux • A. H. Berger • M. Romeo-Tricas • M. J. MentenD. Rückert • J. C. Paetzold
Exploring Graphs as Data Representation for Disease Classification in Ophthalmology.
GRAIL @MICCAI 2024 - 6th Workshop on GRaphs in biomedicAl Image anaLysis at the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. Marrakesh, Morocco, Oct 06-10, 2024. DOI URL

[33] A Conference
A. H. Berger • L. LuxN. StuckiV. Bürgin • S. Shit • A. Banaszaka • D. RückertU. Bauer • J. C. Paetzold
Topologically faithful multi-class segmentation in medical images.
MICCAI 2024 - 27th International Conference on Medical Image Computing and Computer Assisted Intervention. Marrakesh, Morocco, Oct 06-10, 2024. DOI

[32]
J. Li • S. H. Kim • P. Müller • L. Felsner • D. RückertB. WiestlerJ. A. SchnabelC. I. Bercea
Language Models Meet Anomaly Detection for Better Interpretability and Generalizability.
MMMI @MICCAI 2024 - 5th International Workshop on Multiscale Multimodal Medical Imaging at the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. Marrakesh, Morocco, Oct 06-10, 2024. DOI GitHub

[31]
B. Jian • J. Pan • M. GhahremaniD. RückertC. WachingerB. Wiestler
Mamba? Catch The Hype Or Rethink What Really Helps for Image Registration.
WBIR @MICCAI 2024 - 11th International Workshop on Biomedical Image Registration at the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. Marrakesh, Morocco, Oct 06-10, 2024. DOI

[30]
F. KöglA. Reithmeir • V. Sideri-Lampretsa • I. Machado • R. Braren • D. RückertJ. A. Schnabel • V. A. Zimmer
General Vision Encoder Features as Guidance in Medical Image Registration.
WBIR @MICCAI 2024 - 11th International Workshop on Biomedical Image Registration at the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. Marrakesh, Morocco, Oct 06-10, 2024. DOI URL

[29] A* Conference
P. Müller • G. KaissisD. Rückert
ChEX: Interactive Localization and Region Description in Chest X-rays.
ECCV 2024 - 18th European Conference on Computer Vision. Milano, Italy, Sep 29-Oct 04, 2024. DOI GitHub

[28] Top Journal
D. SchalkR. Rehms • V. S. Hoffmann • B. Bischl • U. Mansmann
Distributed non-disclosive validation of predictive models by a modified ROC-GLM.
BMC Medical Research Methodology 24.190. Aug. 2024. DOI

[27] Top Journal
A. C. Erdur • D. Rusche • D. ScholzJ. Kiechle • S. Fischer • Ó. Llorián-Salvador • J. A. Buchner • M. Q. Nguyen • L. Etzel • J. Weidner • M.-C. Metz • B. WiestlerJ. A. SchnabelD. Rückert • S. E. Combs • J. C. Peeken
Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives.
Strahlentherapie und Onkologie 201. Aug. 2024. DOI GitHub

[26] A* Conference
G. Kaissis • S. Kolek • B. Balle • J. Hayes • D. Rückert
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

[25]
M. KeicherK. Zaripova • T. Czempiel • K. Mach • A. KhakzarN. Navab
FlexR: Few-shot Classification with Language Embeddings for Structured Reporting of Chest X-rays.
MIDL 2024 - Medical Imaging with Deep Learning. Paris, France, Jul 03-05, 2024. URL

[24] Top Journal
R. Wicklein • L. Kreitner • A. Wild • L. Aly • D. Rückert • B. Hemmer • T. Korn • M. J. Menten • B. Knier
Retinal small vessel pathology is associated with disease burden in multiple sclerosis.
Multiple Sclerosis Journal 30.7. Jun. 2024. DOI

[23]
A. Ziller • T. T. Mueller • S. Stieger • L. F. Feiner • J. Brandt • R. Braren • D. RückertG. Kaissis
Reconciling privacy and accuracy in AI for medical imaging.
Nature Machine Intelligence 6. Jun. 2024. DOI

[22]
N. Stolt-Ansó • V. Sideri-Lampretsa • M. Dannecker • D. Rückert
Intensity-based 3D motion correction for cardiac MR images.
ISBI 2024 - IEEE 21st International Symposium on Biomedical Imaging. Athens, Greece, May 27-30, 2024. DOI

[21]
Y. Zhang • N. Stolt-Ansó • J. Pan • W. Huang • K. Hammernik • D. Rückert
Direct Cardiac Segmentation from Undersampled K-Space using Transformers.
ISBI 2024 - IEEE 21st International Symposium on Biomedical Imaging. Athens, Greece, May 27-30, 2024. DOI

[20]
Y. Zhang • N. Stolt-Ansó • J. Pan • W. Huang • K. Hammernik • D. Rückert
Reconstruction-free segmentation from undersampled k-space using transformers.
ISMRM 2024 - International Society for Magnetic Resonance in Medicine Annual Meeting. Singapore, May 04-09, 2024. URL

[19]
S. T. Arasteh • A. Ziller • C. Kuhl • M. Makowski • S. Nebelung • R. Braren • D. Rückert • D. Truhn • G. Kaissis
Preserving fairness and diagnostic accuracy in private large-scale AI models for medical imaging.
Communications Medicine 4.46. Mar. 2024. DOI

[18] Top Journal
L. Kreitner • J. C. Paetzold • N. Rauch • C. Chen • A. M. Hagag • A. E. Fayed • S. Sivaprasad • S. Rausch • J. Weichsel • B. H. Menze • M. Harders • B. Knier • D. RückertM. J. Menten
Synthetic Optical Coherence Tomography Angiographs for Detailed Retinal Vessel Segmentation Without Human Annotations.
IEEE Transactions on Medical Imaging 43.6. Jan. 2024. DOI

2023


[17] A* Conference
G. Kaissis • A. Ziller • S. Kolek • A. Riess • D. Rückert
Optimal privacy guarantees for a relaxed threat model: Addressing sub-optimal adversaries in differentially private machine learning.
NeurIPS 2023 - 37th Conference on Neural Information Processing Systems. New Orleans, LA, USA, Dec 10-16, 2023. URL

[16] Top Journal
R. Raab • A. Küderle • A. Zakreuskaya • A. D. Stern • J. Klucken • G. KaissisD. Rückert • S. Boll • R. Eils • H. Wagener • B. M. Eskofier
Federated electronic health records for the European Health Data Space.
The Lancet Digital Health 5.11. Nov. 2023. DOI

[15]
D. ScholzB. WiestlerD. RückertM. J. Menten
Metrics to Quantify Global Consistency in Synthetic Medical Images.
DGM4 @MICCAI 2023 - 3rd International Workshop on Deep Generative Models at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention. Vancouver, Canada, Oct 08-12, 2023. DOI

[14]
V. A. Zimmer • K. Hammernik • V. Sideri-Lampretsa • W. Huang • A. ReithmeirD. RückertJ. A. Schnabel
Towards Generalised Neural Implicit Representations for Image Registration.
DGM4 @MICCAI 2023 - 3rd International Workshop on Deep Generative Models at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention. Vancouver, Canada, Oct 08-12, 2023. DOI

[13] A Conference
R. Holland • O. Leingang • C. Holmes • P. Anders • R. Kaye • S. Riedl • J. C. Paetzold • I. Ezhov • H. Bogunović • U. Schmidt-Erfurth • H. P. N. Scholl • S. Sivaprasad • A. J. Lotery • D. RückertM. J. Menten
Clustering Disease Trajectories in Contrastive Feature Space for Biomarker Proposal in Age-Related Macular Degeneration.
MICCAI 2023 - 26th International Conference on Medical Image Computing and Computer Assisted Intervention. Vancouver, Canada, Oct 08-12, 2023. DOI

[12] A Conference
N. Stolt-AnsóJ. McGinnis • J. Pan • K. Hammernik • D. Rückert
NISF: Neural implicit segmentation functions.
MICCAI 2023 - 26th International Conference on Medical Image Computing and Computer Assisted Intervention. Vancouver, Canada, Oct 08-12, 2023. DOI

[11] A* Conference
M. J. Menten • J. C. Paetzold • V. A. Zimmer • S. Shit • I. Ezhov • R. Holland • M. Probst • J. A. SchnabelD. Rückert
A Skeletonization Algorithm for Gradient-Based Optimization.
ICCV 2023 - IEEE/CVF International Conference on Computer Vision. Paris, France, Oct 02-06, 2023. DOI

[10]
A. Khakzar
Rethinking Feature Attribution for Neural Network Explanation.
Dissertation TU München. Aug. 2023. URL

2022


[9]
P. Engstler • M. Keicher • D. Schinz • K. Mach • A. S. Gersing • S. C. Foreman • S. S. Goller • J. Weissinger • J. Rischewski • A.-S. Dietrich • B. Wiestler • J. S. Kirschke • A. KhakzarN. Navab
Interpretable Vertebral Fracture Diagnosis.
iMIMIC @MICCAI 2022 - Workshop on Interpretability of Machine Intelligence in Medical Image Computing at the 25th International Conference on Medical Image Computing and Computer Assisted Intervention. Singapore, Sep 18-22, 2022. DOI GitHub

[8]
A. KhakzarY. Li • Y. Zhang • M. Sanisoglu • S. T. Kim • M. RezaeiB. BischlN. Navab
Analyzing the Effects of Handling Data Imbalance on Learned Features from Medical Images by Looking Into the Models.
IMLH @ICML 2022 - 2nd Workshop on Interpretable Machine Learning in Healthcare at the 39th International Conference on Machine Learning. Baltimore, MD, USA, Jul 17-23, 2022. arXiv

[7] A* Conference
A. Khakzar • P. Khorsandi • R. Nobahari • N. Navab
Do Explanations Explain? Model Knows Best.
CVPR 2022 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, LA, USA, Jun 19-24, 2022. DOI GitHub

[6]
M. KeicherK. Zaripova • T. Czempiel • K. Mach • A. KhakzarN. Navab
Few-shot Structured Radiology Report Generation Using Natural Language Prompts.
Preprint (Mar. 2022). arXiv

2021


[5] A* Conference
Y. Zhang • A. KhakzarY. LiA. Farshad • S. T. Kim • N. Navab
Fine-Grained Neural Network Explanation by Identifying Input Features with Predictive Information.
NeurIPS 2021 - Track on Datasets and Benchmarks at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. URL

[4] A Conference
A. Khakzar • S. Musatian • J. Buchberger • I. V. Quiroz • N. Pinger • S. Baselizadeh • S. T. Kim • N. Navab
Towards Semantic Interpretation of Thoracic Disease and COVID-19 Diagnosis Models.
MICCAI 2021 - 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Strasbourg, France, Sep 27-Oct 01, 2021. DOI GitHub

[3] A Conference
A. Khakzar • Y. Zhang • W. Mansour • Y. Cai • Y. Li • Y. Zhang • S. T. Kim • N. Navab
Explaining COVID-19 and Thoracic Pathology Model Predictions by Identifying Informative Input Features.
MICCAI 2021 - 24th International Conference on Medical Image Computing and Computer Assisted Intervention. Strasbourg, France, Sep 27-Oct 01, 2021. DOI GitHub

[2] A* Conference
A. Khakzar • S. Baselizadeh • S. Khanduja • C. Rupprecht • S. T. Kim • N. Navab
Neural Response Interpretation through the Lens of Critical Pathways.
CVPR 2021 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Virtual, Jun 19-25, 2021. DOI

2020


[1]
S. Denner • A. Khakzar • M. Sajid • M. Saleh • Z. Spiclin • S. T. Kim • N. Navab
Spatio-temporal learning from longitudinal data for multiple sclerosis lesion segmentation.
BrainLes @MICCAI 2020 - Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries at the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention. Virtual, Oct 04-08, 2020. DOI GitHub