holds the Chair of Statistical Learning and Data Science at the Department of Statistics at LMU Munich.
He studied Computer Science, Artificial Intelligence and Data Sciences in Hamburg, Edinburgh and Dortmund and obtained his PhD from Dortmund Technical University in 2013 with a thesis on "Model and Algorithm Selection in Statistical Learning and Optimization". His research interests include AutoML, Model Selection, Interpretable ML, as well as the development of Statistical Software. He is a member of ELLIS in general, and a faculty member of ELLIS Munich, an active developer of several R-packages, leads the "mlr" (Machine Learning in R) engineering group and is co-founder of the science platform "OpenML" for open and reproducible ML. Furthermore, he leads the Munich branch of the Fraunhofer ADA Lovelace Center for Analytics, Data & Applications, i.e. a new type of research infrastructure to support businesses in Bavaria, especially in the SME sector.
Hyperparameter optimization is crucial for obtaining peak performance of machine learning models. The standard protocol evaluates various hyperparameter configurations using a resampling estimate of the generalization error to guide optimization and select a final hyperparameter configuration. Without much evidence, paired resampling splits, i.e., either a fixed train-validation split or a fixed cross-validation scheme, are often recommended. We show that, surprisingly, reshuffling the splits for every configuration often improves the final model’s generalization performance on unseen data. Our theoretical analysis explains how reshuffling affects the asymptotic behavior of the validation loss surface and provides a bound on the expected regret in the limiting regime. This bound connects the potential benefits of reshuffling to the signal and noise characteristics of the underlying optimization problem. We confirm our theoretical results in a controlled simulation study and demonstrate the practical usefulness of reshuffling in a large-scale, realistic hyperparameter optimization experiment. While reshuffling leads to test performances that are competitive with using fixed splits, it drastically improves results for a single train-validation holdout protocol and can often make holdout become competitive with standard CV while being computationally cheaper.
Overparametrized transformer networks are the state-of-the-art architecture for Large Language Models (LLMs). However, such models contain billions of parameters making large compute a necessity, while raising environmental concerns. To address these issues, we propose FinerCut, a new form of fine-grained layer pruning, which in contrast to prior work at the transformer block level, considers all self-attention and feed-forward network (FFN) layers within blocks as individual pruning candidates. FinerCut prunes layers whose removal causes minimal alternation to the model’s output – contributing to a new, lean, interpretable, and task-agnostic pruning method. Tested across 9 benchmarks, our approach retains 90% performance of Llama3-8B with 25% layers removed, and 95% performance of Llama3-70B with 30% layers removed, all without fine-tuning or post-pruning reconstruction. Strikingly, we observe intriguing results with FinerCut: 42% (34 out of 80) of the self-attention layers in Llama3-70B can be removed while preserving 99% of its performance – without additional fine-tuning after removal. Moreover, FinerCut provides a tool to inspect the types and locations of pruned layers, allowing to observe interesting pruning behaviors. For instance, we observe a preference for pruning self-attention layers, often at deeper consecutive decoder layers. We hope our insights inspire future efficient LLM architecture designs.
Decoding from the output distributions of large language models to produce high-quality text is a complex challenge in language modeling. Various approaches, such as beam search, sampling with temperature, k−sampling, nucleus p−sampling, typical decoding, contrastive decoding, and contrastive search, have been proposed to address this problem, aiming to improve coherence, diversity, as well as resemblance to human-generated text. In this study, we introduce adaptive contrastive search, a novel decoding strategy extending contrastive search by incorporating an adaptive degeneration penalty, guided by the estimated uncertainty of the model at each generation step. This strategy is designed to enhance both the creativity and diversity of the language modeling process while at the same time producing coherent and high-quality generated text output. Our findings indicate performance enhancement in both aspects, across different model architectures and datasets, underscoring the effectiveness of our method in text generation tasks. Our code base, datasets, and models are publicly available.
Self-supervised learning (SSL) has gained prominence due to the increasing availability of unlabeled data and advances in computational efficiency, leading to revolutionized natural language processing with pre-trained language models like BERT and GPT. Representation learning, a core concept in SSL, aims to reduce data dimensionality while preserving meaningful aspects. Conventional SSL methods typically embed data in Euclidean space. However, recent research has revealed that alternative geometries can hold even richer representations, unlocking more meaningful insights from the data. Motivated by this, we propose two novel methods for integrating Hilbert geometry into self-supervised learning for efficient document embedding. First, we present a method directly incorporating Hilbert geometry into the standard Euclidean contrastive learning framework. Additionally, we propose a multi-view hyperbolic contrastive learning framework contrasting both documents and paragraphs. Our findings demonstrate that contrasting only paragraphs, rather than entire documents, can lead to superior efficiency and effectiveness.
Language-specific evaluation of large language models (LLMs) for multiple-choice question answering (MCQA) is an important means to test their abilities for a multitude of different dimensions. With a data set assembled from questions from the German variant of ‘Who Wants to Be a Millionaire?’ we evaluate a set of German models and ChatGPT concerning factual/commonsense knowledge, syntactic abilities, and logical reasoning, amongst others. We contribute this new MCQA data set, extracted from the show’s episodes and designed to evaluate the ability of models to answer this diverse range of questions. To ensure data quality, we describe our preprocessing, encompassing data cleaning, deduplication, and the creation of stratified splits. Furthermore, we fine-tune a set of German LLMs and prompt ChatGPT to provide baseline results. Our findings reveal that these models achieve (partly) satisfactory performance on questions of lower difficulty levels (≤ 1000 euros). As the difficulty increases, performance steadily declines, highlighting the challenging nature of the later stages of the game. We contribute to the ongoing efforts to advance the capabilities of LLMs in comprehending and answering questions by providing a valuable resource for German MCQA research as well as further insights into the limitations of current LLMs.
Decoding strategies for large language models (LLMs) are a critical but often underexplored aspect of text generation tasks. Since LLMs produce probability distributions over the entire vocabulary, various decoding methods have been developed to transform these probabilities into coherent and fluent text, each with its own set of hyperparameters. In this study, we present a large-scale, comprehensive analysis of how hyperparameter selection affects text quality in open-ended text generation across multiple LLMs, datasets, and evaluation metrics. Through an extensive sensitivity analysis, we provide practical guidelines for hyperparameter tuning and demonstrate the substantial influence of these choices on text quality. Using three established datasets, spanning factual domains (e.g., news) and creative domains (e.g., fiction), we show that hyperparameter tuning significantly impacts generation quality, though its effects vary across models and tasks. We offer in-depth insights into these effects, supported by both human evaluations and a synthesis of widely-used automatic evaluation metrics.
We study the robustness of global post-hoc explanations for predictive models trained on tabular data. Effects of predictor features in black-box supervised learning are an essential diagnostic tool for model debugging and scientific discovery in applied sciences. However, how vulnerable they are to data and model perturbations remains an open research question. We introduce several theoretical bounds for evaluating the robustness of partial dependence plots and accumulated local effects. Our experimental results with synthetic and real-world datasets quantify the gap between the best and worst-case scenarios of (mis)interpreting machine learning predictions globally.
Self-contrastive learning has proven effective for vision and natural language tasks. It aims to learn aligned data representations by encoding similar and dissimilar sentence pairs without human annotation. Therefore, data augmentation plays a crucial role in the learned embedding quality. However, in natural language processing (NLP), creating augmented samples for unsupervised contrastive learning is challenging since random editing may modify the semantic meanings of sentences and thus affect learning good representations. In this paper, we introduce a simple, still effective approach dubbed ADD (Attention-Driven Dropout) to generate better-augmented views of sentences to be used in self-contrastive learning. Given a sentence and a Pre-trained Transformer Language Model (PLM), such as RoBERTa, we use the aggregated attention scores of the PLM to remove the less “informative” tokens from the input. We consider two alternative algorithms based on NAIVEAGGREGATION across layers/heads and ATTENTIONROLLOUT [1]. Our approach significantly improves the overall performance of various self-supervised contrastive-based methods, including SIMCSE [14], DIFFCSE [10], and INFOCSE [33] by facilitating the generation of high-quality positive pairs required by these methods. Through empirical evaluations on multiple Semantic Textual Similarity (STS) and Transfer Learning tasks, we observe enhanced performance across the board.
Ensembling a neural network is a widely recognized approach to enhance model performance, estimate uncertainty, and improve robustness in deep supervised learning. However, deep ensembles often come with high computational costs and memory demands. In addition, the efficiency of a deep ensemble is related to diversity among the ensemble members, which is challenging for large, over-parameterized deep neural networks. Moreover, ensemble learning has not yet seen such widespread adoption for unsupervised learning and it remains a challenging endeavor for self-supervised or unsupervised representation learning. Motivated by these challenges, we present a novel self-supervised training regime that leverages an ensemble of independent sub-networks, complemented by a new loss function designed to encourage diversity. Our method efficiently builds a sub-model ensemble with high diversity, leading to well-calibrated estimates of model uncertainty, all achieved with minimal computational overhead compared to traditional deep self-supervised ensembles. To evaluate the effectiveness of our approach, we conducted extensive experiments across various tasks, including in-distribution generalization, out-of-distribution detection, dataset corruption, and semi-supervised settings. The results demonstrate that our method significantly improves prediction reliability. Our approach not only achieves excellent accuracy but also enhances calibration, improving on important baseline performance across a wide range of self-supervised architectures in computer vision, natural language processing, and genomics data.
Objective. This study aimed to develop convolutional neural networks (CNNs) models to predict the energy expenditure (EE) of children from raw accelerometer data. Additionally, this study sought to external validation of the CNN models in addition to the linear regression (LM), random forest (RF), and full connected neural network (FcNN) models published in Steenbock et al (2019 J. Meas. Phys. Behav. 2 94–102). Approach. Included in this study were 41 German children (3.0–6.99 years) for the training and internal validation who were equipped with GENEActiv, GT3X+, and activPAL accelerometers. The external validation dataset consisted of 39 Canadian children (3.0–5.99 years) that were equipped with OPAL, GT9X, GENEActiv, and GT3X+ accelerometers. EE was recorded simultaneously in both datasets using a portable metabolic unit. The protocols consisted of a semi-structured activities ranging from low to high intensities. The root mean square error (RMSE) values were calculated and used to evaluate model performances. Main results. (1) The CNNs outperformed the LM (13.17%–23.81% lower mean RMSE values), FcNN (8.13%–27.27% lower RMSE values) and the RF models (3.59%–18.84% lower RMSE values) in the internal dataset. (2) In contrast, it was found that when applied to the external Canadian dataset, the CNN models had consistently higher RMSE values compared to the LM, FcNN, and RF. Significance. Although CNNs can enhance EE prediction accuracy, their ability to generalize to new datasets and accelerometer brands/models, is more limited compared to LM, RF, and FcNN models.
When assessing the quality of prediction models in machine learning, confidence intervals (CIs) for the generalization error, which measures predictive performance, are a crucial tool. Luckily, there exist many methods for computing such CIs and new promising approaches are continuously being proposed. Typically, these methods combine various resampling procedures, most popular among them cross-validation and bootstrapping, with different variance estimation techniques. Unfortunately, however, there is currently no consensus on when any of these combinations may be most reliably employed and how they generally compare. In this work, we conduct the first large-scale study comparing CIs for the generalization error - empirically evaluating 13 different methods on a total of 18 tabular regression and classification problems, using four different inducers and a total of eight loss functions. We give an overview of the methodological foundations and inherent challenges of constructing CIs for the generalization error and provide a concise review of all 13 methods in a unified framework. Finally, the CI methods are evaluated in terms of their relative coverage frequency, width, and runtime. Based on these findings, we are able to identify a subset of methods that we would recommend. We also publish the datasets as a benchmarking suite on OpenML and our code on GitHub to serve as a basis for further studies.
Automatic correction of errors in Handwritten Text Recognition (HTR) output poses persistent challenges yet to be fully resolved. In this study, we introduce a shared task aimed at addressing this challenge, which attracted 271 submissions, yielding only a handful of promising approaches. This paper presents the datasets, the most effective methods, and an experimental analysis in error-correcting HTRed manuscripts and papyri in Byzantine Greek, the language that followed Classical and preceded Modern Greek. By using recognised and transcribed data from seven centuries, the two best-performing methods are compared, one based on a neural encoder-decoder architecture and the other based on engineered linguistic rules. We show that the recognition error rate can be reduced by both, up to 2.5 points at the level of characters and up to 15 at the level of words, while also elucidating their respective strengths and weaknesses.
In this work, we present a collaboratively and continuously developed open-source educational resource (OSER) for teaching natural language processing at two different universities. We shed light on the principles we followed for the initial design of the course and the rationale for ongoing developments, followed by a reflection on the inter-university collaboration for designing and maintaining teaching material. When reflecting on the latter, we explicitly emphasize the considerations that need to be made when facing heterogeneous groups and when having to accommodate multiple examination regulations within one single course framework. Relying on the fundamental principles of OSER developments as defined by Bothmann et al. (2023) proved to be an important guideline during this process. The final part pertains to open-sourcing our teaching material, coping with the increasing speed of developments in the field, and integrating the course digitally, also addressing conflicting priorities and challenges we are currently facing.
Bayesian inference in deep neural networks is challenging due to the high-dimensional, strongly multi-modal parameter posterior density landscape. Markov chain Monte Carlo approaches asymptotically recover the true posterior but are considered prohibitively expensive for large modern architectures. Local methods, which have emerged as a popular alternative, focus on specific parameter regions that can be approximated by functions with tractable integrals. While these often yield satisfactory empirical results, they fail, by definition, to account for the multi-modality of the parameter posterior. In this work, we argue that the dilemma between exact-but-unaffordable and cheap-but-inexact approaches can be mitigated by exploiting symmetries in the posterior landscape. Such symmetries, induced by neuron interchangeability and certain activation functions, manifest in different parameter values leading to the same functional output value. We show theoretically that the posterior predictive density in Bayesian neural networks can be restricted to a symmetry-free parameter reference set. By further deriving an upper bound on the number of Monte Carlo chains required to capture the functional diversity, we propose a straightforward approach for feasible Bayesian inference. Our experiments suggest that efficient sampling is indeed possible, opening up a promising path to accurate uncertainty quantification in deep learning.
With the increased use of machine learning (ML) models within automated decision-making systems, the demands on the quality of ML models are growing. Pure prediction quality is no longer the sole quality criterion; in particular, there is an increasing demand to consider fairness aspects. This paper pursues two goals. First, it summarizes the current fairness discussion in the field of ML (fairML) and describes the most recent developments, especially with respect to the philosophical foundations of the concept of fairness within ML. On the other hand, the question is addressed to what extent so-called ‘extra-legal’ characteristics may be used in the compilation of qualified rent indices. A recent proposal by Kauermann and Windmann (AStA Wirtschafts- und Sozialstatistisches Archiv, Volume 17, 2023) on using extra-legal features in qualified rent indices includes a model-based imputation method, which we contrast with the legal requirements. Finally, we show which alternatives from the field of fairML could be used and outline the different basic philosophical assumptions behind the various methods.
Distributed statistical analyses provide a promising approach for privacy protection when analyzing data distributed over several databases. Instead of directly operating on data, the analyst receives anonymous summary statistics, which are combined into an aggregated result. Further, in discrimination model (prognosis, diagnosis, etc.) development, it is key to evaluate a trained model w.r.t. to its prognostic or predictive performance on new independent data. For binary classification, quantifying discrimination uses the receiver operating characteristics (ROC) and its area under the curve (AUC) as aggregation measure. We are interested to calculate both as well as basic indicators of calibration-in-the-large for a binary classification task using a distributed and privacy-preserving approach…
Cancer cells and pathogens can evade T cell receptors (TCRs) via mutations in immunogenic epitopes. TCR cross-reactivity (i.e., recognition of multiple epitopes with sequence similarities) can counteract such escape but may cause severe side effects in cell-based immunotherapies through targeting self-antigens. To predict the effect of epitope point mutations on T cell functionality, we here present the random forest-based model Predicting T Cell Epitope-Specific Activation against Mutant Versions (P-TEAM). P-TEAM was trained and tested on three datasets with TCR responses to single-amino-acid mutations of the model epitope SIINFEKL, the tumor neo-epitope VPSVWRSSL, and the human cytomegalovirus antigen NLVPMVATV, totaling 9,690 unique TCR-epitope interactions. P-TEAM was able to accurately classify T cell reactivities and quantitatively predict T cell functionalities for unobserved single-point mutations and unseen TCRs. Overall, P-TEAM provides an effective computational tool to study T cell responses against mutated epitopes.
The localization of objects is essential in many applications, such as robotics, virtual and augmented reality, and warehouse logistics. Recent advancements in deep learning have enabled localization using monocular cameras. Traditionally, structure from motion (SfM) techniques predict an object’s absolute position from a point cloud, while absolute pose regression (APR) methods use neural networks to understand the environment semantically. However, both approaches face challenges from environmental factors like motion blur, lighting changes, repetitive patterns, and featureless areas. This study addresses these challenges by incorporating additional information and refining absolute pose estimates with relative pose regression (RPR) methods. RPR also struggles with issues like motion blur. To overcome this, we compute the optical flow between consecutive images using the Lucas–Kanade algorithm and use a small recurrent convolutional network to predict relative poses. Combining absolute and relative poses is difficult due to differences between global and local coordinate systems. Current methods use pose graph optimization (PGO) to align these poses. In this work, we propose recurrent fusion networks to better integrate absolute and relative pose predictions, enhancing the accuracy of absolute pose estimates. We evaluate eight different recurrent units and create a simulation environment to pre-train the APR and RPR networks for improved generalization. Additionally, we record a large dataset of various scenarios in a challenging indoor environment resembling a warehouse with transportation robots. Through hyperparameter searches and experiments, we demonstrate that our recurrent fusion method outperforms PGO in effectiveness.
We warn against a common but incomplete understanding of empirical research in machine learning (ML) that leads to non-replicable results, makes findings unreliable, and threatens to undermine progress in the field. To overcome this alarming situation, we call for more awareness of the plurality of ways of gaining knowledge experimentally but also of some epistemic limitations. In particular, we argue most current empirical ML research is fashioned as confirmatory research while it should rather be considered exploratory.
Automated machine learning (AutoML) was formed around the fundamental objectives of automatically and efficiently configuring machine learning (ML) workflows, aiding the research of new ML algorithms, and contributing to the democratization of ML by making it accessible to a broader audience. Over the past decade, commendable achievements in AutoML have primarily focused on optimizing predictive performance. This focused progress, while substantial, raises questions about how well AutoML has met its broader, original goals. In this position paper, we argue that a key to unlocking AutoML’s full potential lies in addressing the currently underexplored aspect of user interaction with AutoML systems, including their diverse roles, expectations, and expertise. We envision a more human-centered approach in future AutoML research, promoting the collaborative design of ML systems that tightly integrates the complementary strengths of human expertise and AutoML methodologies.
A major challenge in sample-based inference (SBI) for Bayesian neural networks is the size and structure of the networks’ parameter space. Our work shows that successful SBI is possible by embracing the characteristic relationship between weight and function space, uncovering a systematic link between overparameterization and the difficulty of the sampling problem. Through extensive experiments, we establish practical guidelines for sampling and convergence diagnosis. As a result, we present a Bayesian deep ensemble approach as an effective solution with competitive performance and uncertainty quantification.
Counterfactual explanations elucidate algorithmic decisions by pointing to scenarios that would have led to an alternative, desired outcome. Giving insight into the model’s behavior, they hint users towards possible actions and give grounds for contesting decisions. As a crucial factor in achieving these goals, counterfactuals must be plausible, i.e., describing realistic alternative scenarios within the data manifold. This paper leverages a recently developed generative modeling technique – adversarial random forests (ARFs) – to efficiently generate plausible counterfactuals in a model-agnostic way. ARFs can serve as a plausibility measure or directly generate counterfactual explanations. Our ARF-based approach surpasses the limitations of existing methods that aim to generate plausible counterfactual explanations: It is easy to train and computationally highly efficient, handles continuous and categorical data naturally, and allows integrating additional desiderata such as sparsity in a straightforward manner.
While machine learning (ML) models are increasingly used due to their high predictive power, their use in understanding the data-generating process (DGP) is limited. Understanding the DGP requires insights into feature-target associations, which many ML models cannot directly provide due to their opaque internal mechanisms. Feature importance (FI) methods provide useful insights into the DGP under certain conditions. Since the results of different FI methods have different interpretations, selecting the correct FI method for a concrete use case is crucial and still requires expert knowledge. This paper serves as a comprehensive guide to help understand the different interpretations of global FI methods. Through an extensive review of FI methods and providing new proofs regarding their interpretation, we facilitate a thorough understanding of these methods and formulate concrete recommendations for scientific inference. We conclude by discussing options for FI uncertainty estimation and point to directions for future research aiming at full statistical inference from black-box ML models.
Understanding how assignments of instances to clusters can be attributed to the features can be vital in many applications. However, research to provide such feature attributions has been limited. Clustering algorithms with built-in explanations are scarce. Common algorithm-agnostic approaches involve dimension reduction and subsequent visualization, which transforms the original features used to cluster the data; or training a supervised learning classifier on the found cluster labels, which adds additional and intractable complexity. We present FACT (feature attributions for clustering), an algorithm-agnostic framework that preserves the integrity of the data and does not introduce additional models. As the defining characteristic of FACT, we introduce a set of work stages: sampling, intervention, reassignment, and aggregation. Furthermore, we propose two novel FACT methods: SMART (scoring metric after permutation) measures changes in cluster assignments by custom scoring functions after permuting selected features; IDEA (isolated effect on assignment) indicates local and global changes in cluster assignments after making uniform changes to selected features.
This work introduces a novel R package for concise, informative summaries of machine learning models. We take inspiration from the summary function for (generalized) linear models in R, but extend it in several directions: First, our summary function is model-agnostic and provides a unified summary output also for non-parametric machine learning models; Second, the summary output is more extensive and customizable – it comprises information on the dataset, model performance, model complexity, model’s estimated feature importances, feature effects, and fairness metrics;
Third, models are evaluated based on resampling strategies for unbiased estimates of model performances, feature importances, etc. Overall, the clear, structured output should help to enhance and expedite the model selection process, making it a helpful tool for practitioners and researchers alike.
This work introduces a novel R package for concise, informative summaries of machine learning models. We take inspiration from the summary function for (generalized) linear models in R, but extend it in several directions: First, our summary function is model-agnostic and provides a unified summary output also for non-parametric machine learning models; Second, the summary output is more extensive and customizable – it comprises information on the dataset, model performance, model complexity, model’s estimated feature importances, feature effects, and fairness metrics;
Third, models are evaluated based on resampling strategies for unbiased estimates of model performances, feature importances, etc. Overall, the clear, structured output should help to enhance and expedite the model selection process, making it a helpful tool for practitioners and researchers alike.
mlr3torch is a deep learning framework for the mlr3 ecosystem built on top of torch. It allows to easily build, train and evaluate deep learning models in a few lines of codes, without needing to worry about low-level details. Off-the-shelf learners are readily available, but custom architectures can be defined by connecting PipeOpTorch operators in an mlr3pipelines::Graph.
In the past few years automated machine learning (AutoML) has gained a lot of traction in the data science and machine learning community. AutoML aims at reducing the partly repetitive work of data scientists and enabling domain experts to construct machine learning pipelines without extensive knowledge in data science. This chapter presents a comprehensive review of the current leading AutoML methods and sets AutoML in an industrial context. To this extent we present the typical components of an AutoML system, give an overview over the stateof-the-art and highlight challenges to industrial application by presenting several important topics such as AutoML for time series data, AutoML in unsupervised settings, AutoML with multiple evaluation criteria, or interactive human-in-the-loop methods. Finally, the connection to Neural Architecture Search (NAS) is presented and a brief review with special emphasis on hardware-aware NAS is given.
Large Language Models (LLMs) have reshaped natural language processing with their impressive capabilities. However, their ever-increasing size has raised concerns about their effective deployment and the need for LLM compression. This study introduces the Divergent Token Metrics (DTMs), a novel approach to assessing compressed LLMs, addressing the limitations of traditional perplexity or accuracy measures that fail to accurately reflect text generation quality. DTMs measure token divergences that allow deeper insights into the subtleties of model compression, in particular, when evaluating components’ impacts individually. Utilizing the First Divergent Token Metric (FDTM) in model sparsification reveals that 25% of all attention components can be pruned beyond 90% on the Llama-2 model family, still keeping SOTA performance. For quantization, FDTM suggests that more than 80% of parameters can be naively transformed to int8 without special outlier management. These evaluations indicate the necessity of choosing appropriate compressions for parameters individually—and that FDTM can identify those—while standard metrics result in deteriorated outcomes.
Exact computation of various machine learning explanations requires numerous model evaluations and in extreme cases becomes impractical. The computational cost of approximation increases with an ever-increasing size of data and model parameters. Many heuristics have been proposed to approximate post-hoc explanations efficiently. This paper shows that the standard i.i.d. sampling used in a broad spectrum of algorithms for explanation estimation leads to an approximation error worthy of improvement. To this end, we introduce Compress Then Explain (CTE), a new paradigm for more efficient and accurate explanation estimation. CTE uses distribution compression through kernel thinning to obtain a data sample that best approximates the marginal distribution. We show that CTE improves the estimation of removal-based local and global explanations with negligible computational overhead. It often achieves an on-par explanation approximation error using 2-3x less samples, i.e. requiring 2-3x less model evaluations. CTE is a simple, yet powerful, plug-in for any explanation method that now relies on i.i.d. sampling.
This work presents the first large-scale neutral benchmark experiment focused on single-event, right-censored, low-dimensional survival data. Benchmark experiments are essential in methodological research to scientifically compare new and existing model classes through proper empirical evaluation. Existing benchmarks in the survival literature are often narrow in scope, focusing, for example, on high-dimensional data. Additionally, they may lack appropriate tuning or evaluation procedures, or are qualitative reviews, rather than quantitative comparisons. This comprehensive study aims to fill the gap by neutrally evaluating a broad range of methods and providing generalizable conclusions. We benchmark 18 models, ranging from classical statistical approaches to many common machine learning methods, on 32 publicly available datasets. The benchmark tunes for both a discrimination measure and a proper scoring rule to assess performance in different settings. Evaluating on 8 survival metrics, we assess discrimination, calibration, and overall predictive performance of the tested models. Using discrimination measures, we find that no method significantly outperforms the Cox model. However, (tuned) Accelerated Failure Time models were able to achieve significantly better results with respect to overall predictive performance as measured by the right-censored log-likelihood. Machine learning methods that performed comparably well include Oblique Random Survival Forests under discrimination, and Cox-based likelihood-boosting under overall predictive performance. We conclude that for predictive purposes in the standard survival analysis setting of low-dimensional, right-censored data, the Cox Proportional Hazards model remains a simple and robust method, sufficient for practitioners.
In this paper, we propose a novel probabilistic self-supervised learning via Scoring Rule Minimization (ProSMIN), which leverages the power of probabilistic models to enhance representation quality and mitigate collapsing representations. Our proposed approach involves two neural networks; the online network and the target network, which collaborate and learn the diverse distribution of representations from each other through knowledge distillation. By presenting the input samples in two augmented formats, the online network is trained to predict the target network representation of the same sample under a different augmented view. The two networks are trained via our new loss function based on proper scoring rules. We provide a theoretical justification for ProSMIN’s convergence, demonstrating the strict propriety of its modified scoring rule. This insight validates the method’s optimization process and contributes to its robustness and effectiveness in improving representation quality. We evaluate our probabilistic model on various downstream tasks, such as in-distribution generalization, out-of-distribution detection, dataset corruption, low-shot learning, and transfer learning. Our method achieves superior accuracy and calibration, surpassing the self-supervised baseline in a wide range of experiments on large-scale datasets like ImageNet-O and ImageNet-C, ProSMIN demonstrates its scalability and real-world applicability.
Data in tabular form makes up a large part of real-world ML applications, and thus, there has been a strong interest in developing novel deep learning (DL) architectures for supervised learning on tabular data in recent years. As a result, there is a debate as to whether DL methods are superior to the ubiquitous ensembles of boosted decision trees. Typically, the advantage of one model class over the other is claimed based on an empirical evaluation, where different variations of both model classes are compared on a set of benchmark datasets that supposedly resemble relevant real-world tabular data. While the landscape of state-of- the-art models for tabular data changed, one factor has remained largely constant over the years: The datasets. Here, we examine 30 recent publications and 187 different datasets they use, in terms of age, study size and relevance. We found that the average study used less than 10 datasets and that half of the datasets are older than 20 years. Our insights raise questions about the conclusions drawn from previous studies and urge the research community to develop and publish additional recent, challenging and relevant datasets and ML tasks for supervised learning on tabular data.
Large language models and their use for text analysis have had a significant impact on psychology and the social and behavioral sciences in general. Key applications include the analysis of texts, such as social media posts, to infer psychological characteristics, as well as survey and interview analysis. In this tutorial paper, we demonstrate the use of the Python-based natural language processing software package transformers (and related modules from the Hugging Face Ecosystem) that allow for the automated classification of text inputs in a practical exercise. In doing so, we rely on pretrained transformer models which can be fine-tuned to a specific task and domain. The first proposed application of this model class is to use it as a feature extractor, allowing for the transformation of written text into real-valued numerical vectors (called ’embeddings’) that capture a text’s semantic meaning. These vectors can, in turn, be used as input for a subsequent machine-learning model. The second presented application of transformer models is the end-to-end training (so-called ‘fine-tuning’) of the model. This results in a direct prediction of the label within the same model that directly maps the text to the embeddings. While in the second case, results are usually better and training works more seamlessly, the model itself is often not directly interpretable. We showcase an alleviation of this issue via the application of post-hoc interpretability methods by calculating SHAP values and applying local interpretable model-agnostic explanations (LIME) in an attempt to explain the model’s inner workings.
The success of deep learning in various applications depends on task-specific architecture design choices, including the types, hyperparameters, and number of layers. In computational biology, there is no consensus on the optimal architecture design, and decisions are often made using insights from more well-established fields such as computer vision. These may not consider the domain-specific characteristics of genome sequences, potentially limiting performance. Here, we present GenomeNet-Architect, a neural architecture design framework that automatically optimizes deep learning models for genome sequence data. It optimizes the overall layout of the architecture, with a search space specifically designed for genomics. Additionally, it optimizes hyperparameters of individual layers and the model training procedure. On a viral classification task, GenomeNet-Architect reduced the read-level misclassification rate by 19%, with 67% faster inference and 83% fewer parameters, and achieved similar contig-level accuracy with ~100 times fewer parameters compared to the best-performing deep learning baselines.
Global feature effect methods explain a model outputting one plot per feature. The plot shows the average effect of the feature on the output, like the effect of age on the annual income. However, average effects may be misleading when derived from local effects that are heterogeneous, i.e., they significantly deviate from the average. To decrease the heterogeneity, regional effects provide multiple plots per feature, each representing the average effect within a specific subspace. For interpretability, subspaces are defined as hyperrectangles defined by a chain of logical rules, like age’s effect on annual income separately for males and females and different levels of professional experience. We introduce Effector, a Python library dedicated to regional feature effects. Effector implements well-established global effect methods, assesses the heterogeneity of each method and, based on that, provides regional effects. Effector automatically detects subspaces where regional effects have reduced heterogeneity. All global and regional effect methods share a common API, facilitating comparisons between them. Moreover, the library’s interface is extensible so new methods can be easily added and benchmarked.
Estimation of heterogeneous treatment effects (HTE) is of prime importance in many disciplines, from personalized medicine to economics among many others. Random forests have been shown to be a flexible and powerful approach to HTE estimation in both randomized trials and observational studies. In particular “causal forests” introduced by Athey, Tibshirani and Wager (Ann. Statist. 47 (2019) 1148–1178), along with the R implementation in package grf were rapidly adopted. A related approach, called ‘model-based forests’ that is geared toward randomized trials and simultaneously captures effects of both prognostic and predictive variables, was introduced by Seibold, Zeileis and Hothorn (Stat. Methods Med. Res. 27 (2018) 3104–3125) along with a modular implementation in the R package model4you.
Neither procedure is directly applicable to the estimation of individualized predictions of excess postpartum blood loss caused by a cesarean section in comparison to vaginal delivery. Clearly, randomization is hardly possible in this setup, and thus model-based forests lack clinical trial data to address this question. On the other hand, the skewed and interval-censored postpartum blood loss observations violate assumptions made by causal forests. Here we present a tailored model-based forest for skewed and interval-censored data to infer possible predictive prepartum characteristics and their impact on excess postpartum blood loss caused by a cesarean section.
As a methodological basis, we propose a unifying view on causal and model-based forests that goes beyond the theoretical motivations and investigates which computational elements make causal forests so successful and how these can be blended with the strengths of model-based forests. To do so, we show that both methods can be understood in terms of the same parameters and model assumptions for an additive model under L2 loss. This theoretical insight allows us to implement several flavors of ‘model-based causal forests’ and dissect their different elements in silico.
The original causal forests and model-based forests are compared with the new blended versions in a benchmark study exploring both randomized trials and observational settings. In the randomized setting, both approaches performed akin. If confounding was present in the data-generating process, we found local centering of the treatment indicator with the corresponding propensities to be the main driver for good performance. Local centering of the outcome was less important and might be replaced or enhanced by simultaneous split selection with respect to both prognostic and predictive effects. This lays the foundation for future research combining random forests for HTE estimation with other types of models.
Little is known about the time-varying determinants of kidney graft failure in children. We performed a retrospective study of primary pediatric kidney transplant recipients (younger than 18 years) from the Eurotransplant registry (1990-2020). Piece-wise exponential additive mixed models were applied to analyze time-varying recipient, donor, and transplant risk factors. Primary outcome was death-censored graft failure.
Survival Analysis provides critical insights for partially incomplete time-to-event data in various domains. It is also an important example of probabilistic machine learning. The probabilistic nature of the predictions can be exploited by using (proper) scoring rules in the model fitting process instead of likelihood-based optimization. Our proposal does so in a generic manner and can be used for a variety of model classes. We establish different parametric and non-parametric sub-frameworks that allow different degrees of flexibility. Incorporated into neural networks, it leads to a computationally efficient and scalable optimization routine, yielding state-of-the-art predictive performance. Finally, we show that using our framework, we can recover various parametric models and demonstrate that optimization works equally well when compared to likelihood-based methods.
In today’s data-driven world, the proliferation of publicly available information raises security concerns due to the information leakage (IL) problem. IL involves unintentionally exposing sensitive information to unauthorized parties via observable system information. Conventional statistical approaches rely on estimating mutual information (MI) between observable and secret information for detecting ILs, face challenges of the curse of dimensionality, convergence, computational complexity, and MI misestimation. Though effective, emerging supervised machine learning based approaches to detect ILs are limited to binary system sensitive information and lack a comprehensive framework. To address these limitations, we establish a theoretical framework using statistical learning theory and information theory to quantify and detect IL accurately. Using automated machine learning, we demonstrate that MI can be accurately estimated by approximating the typically unknown Bayes predictor’s log-loss and accuracy. Based on this, we show how MI can effectively be estimated to detect ILs. Our method performs superior to state-of-the-art baselines in an empirical study considering synthetic and real-world OpenSSL TLS server datasets.
The estimation of heterogeneous treatment effects has attracted considerable interest in many disciplines, most prominently in medicine and economics. Contemporary research has so far primarily focused on continuous and binary responses where heterogeneous treatment effects are traditionally estimated by a linear model, which allows the estimation of constant or heterogeneous effects even under certain model misspecifications. More complex models for survival, count, or ordinal outcomes require stricter assumptions to reliably estimate the treatment effect. Most importantly, the noncollapsibility issue necessitates the joint estimation of treatment and prognostic effects. Model-based forests allow simultaneous estimation of covariate-dependent treatment and prognostic effects, but only for randomized trials. In this paper, we propose modifications to model-based forests to address the confounding issue in observational data. In particular, we evaluate an orthogonalization strategy originally proposed by Robinson (1988, Econometrica) in the context of model-based forests targeting heterogeneous treatment effect estimation in generalized linear models and transformation models. We found that this strategy reduces confounding effects in a simulated study with various outcome distributions. We demonstrate the practical aspects of heterogeneous treatment effect estimation for survival and ordinal outcomes by an assessment of the potentially heterogeneous effect of Riluzole on the progress of Amyotrophic Lateral Sclerosis.
The influx of deep learning (DL) techniques into the field of survival analysis in recent years has led to substantial methodological progress; for instance, learning from unstructured or high-dimensional data such as images, text or omics data. In this work, we conduct a comprehensive systematic review of DL-based methods for time-to-event analysis, characterizing them according to both survival- and DL-related attributes. In summary, the reviewed methods often address only a small subset of tasks relevant to time-to-event data—e.g., single-risk right-censored data—and neglect to incorporate more complex settings.
Beta coefficients for linear regression models represent the ideal form of an interpretable feature effect. However, for non-linear models and especially generalized linear models, the estimated coefficients cannot be interpreted as a direct feature effect on the predicted outcome. Hence, marginal effects are typically used as approximations for feature effects, either in the shape of derivatives of the prediction function or forward differences in prediction due to a change in a feature value. While marginal effects are commonly used in many scientific fields, they have not yet been adopted as a model-agnostic interpretation method for machine learning models. This may stem from their inflexibility as a univariate feature effect and their inability to deal with the non-linearities found in black box models. We introduce a new class of marginal effects termed forward marginal effects. We argue to abandon derivatives in favor of better-interpretable forward differences. Furthermore, we generalize marginal effects based on forward differences to multivariate changes in feature values. To account for the non-linearity of prediction functions, we introduce a non-linearity measure for marginal effects. We argue against summarizing feature effects of a non-linear prediction function in a single metric such as the average marginal effect. Instead, we propose to partition the feature space to compute conditional average marginal effects on feature subspaces, which serve as conditional feature effect estimates.
Comparing different AutoML frameworks is notoriously challenging and often done incorrectly. We introduce an open and extensible benchmark that follows best practices and avoids common mistakes when comparing AutoML frameworks. We conduct a thorough comparison of 9 well-known AutoML frameworks across 71 classification and 33 regression tasks. The differences between the AutoML frameworks are explored with a multi-faceted analysis, evaluating model accuracy, its trade-offs with inference time, and framework failures. We also use Bradley-Terry trees to discover subsets of tasks where the relative AutoML framework rankings differ. The benchmark comes with an open-source tool that integrates with many AutoML frameworks and automates the empirical evaluation process end-to-end: from framework installation and resource allocation to in-depth evaluation. The benchmark uses public data sets, can be easily extended with other AutoML frameworks and tasks, and has a website with up-to-date results.
Various privacy-preserving frameworks that respect the individual’s privacy in the analysis of data have been developed in recent years. However, available model classes such as simple statistics or generalized linear models lack the flexibility required for a good approximation of the underlying data-generating process in practice. In this paper, we propose an algorithm for a distributed, privacy-preserving, and lossless estimation of generalized additive mixed models (GAMM) using component-wise gradient boosting (CWB). Making use of CWB allows us to reframe the GAMM estimation as a distributed fitting of base learners using the $L_2$-loss. In order to account for the heterogeneity of different data location sites, we propose a distributed version of a row-wise tensor product that allows the computation of site-specific (smooth) effects. Our adaption of CWB preserves all the important properties of the original algorithm, such as an unbiased feature selection and the feasibility to fit models in high-dimensional feature spaces, and yields equivalent model estimates as CWB on pooled data. Next to a derivation of the equivalence of both algorithms, we also showcase the efficacy of our algorithm on a distributed heart disease data set and compare it with state-of-the-art methods.
Machine learning models can only be deployed in practice if they are robustly evaluated to estimate a model’s generalization performance, i.e. how well it will perform on new data. Resampling strategies including cross-validation and bootstrapping, can be used to estimate the generalization performance. Models can be compared to one another using a benchmark experiment, which makes use of the same resampling strategies and measures to fairly compare models and to help practitioners decide which model to use in practice.
This chapter introduces resample strategies in mlr3, including cross-validation, repeated cross-validation, leave-one-out, bootstrapping, and custom strategies. These are then demonstrated with the resample() function, which is used to resample a single learner with a given strategy. Benchmarking is then introduced and the benchmark() function is demonstrated for comparing multiple learners. The chapter concludes with a deep dive into binary classification evaluation, including ROC analysis and the Area Under the Curve metric.
Machine learning models include parameters and hyperparameters. The former refers to model coefficients that are estimated during training. The latter are parameters that are set by the user and affect how the model is fit or how it makes predictions. Setting hyperparameters manually is arduous and error-prone, instead hyperparameter optimization (HPO) automating this ‘tuning’ procedure to reduce bias. When performing HPO there are many considerations including what tuning algorithm to use, how long to tune it for, and what measures to optimize. Moreover users have to decide which hyperparameters to tune and for what configurations. Finally, one has to be careful to make use of nested resampling to prevent leakage of information from training to testing datasets that can occur when resampling and tuning simultaneously. This chapter begins by introducing mlr3tuning and its functionality for tuning learners. This includes Tuners for configuring and running optimization algorithms, TuningInstances for storing results, and Terminators for controlling when to stop the HPO process. The chapter provides a practical example of tuning hyperparameters of a support vector machine, including introducing logarithmic transformations. The AutoTuner class is also introduced which is used for automating nested resampling to reduce bias in tuning.
Automated tuning can be error prone and it is very likely that models will crash in the tuning process, it is therefore essential to have reliable methods of encapsulating errors to prevent large experiments from failing and losing intermediate results. This chapter therefore begins by introducing fallback learners and encapsulation methods, which are returned to in ‘Advanced Technical Aspects of mlr3’.
Models can be tuned with respect to one or multiple measures. In general when tuning to multiple measures there will be a trade-off between them and therefore there will not be one optimal hyperparameter configuration, instead the aim is to estimate configurations that are not Pareto-dominated by any other. This chapter introduces multi-objective tuning and concepts including Pareto optimality.
Some tuning methods are more advanced than others, including Hyperband and Bayesian optimization. Hyperband is a multi-fidelity tuner that makes use of fidelity parameters, which provide a tradeoff between model runtime and performance accuracy. Bayesian optimization is a sample-efficient black-box optimization algorithm that is highly flexible and allows user fine-grained control over tuning large search spaces. This chapter introduces mlr3hyperband and the concept of fidelity parameters, and then mlr3mbo and bbotk to discuss black-box optimization and Bayesian optimization.
Computational pipelines provide a layer of abstraction for swapping in and out different elements of the pipeline. In machine learning this can be useful for swapping algorithms, as well as common operations for data preprocessing and model post processing. Many real-world machine learning applications involve more than just fitting a single model at a time: It is often beneficial or even necessary to preprocess data for feature engineering and compatibility with learners. In many cases it is also useful to combine predictions of multiple models in ensembles. By defining these workflows as computational objects, it is then possible to treat them like models to be trained/tested and even tuned. This chapter introduces mlr3pipelines, a dataflow programming language that can be used to define machine learning processes from simple building blocks. The chapter focuses on sequential pipelines, in which data passes from one operation to another in a linear sequence and each operation has one input and output. The chapter introduces PipeOp and Graph, which are the building blocks of a pipeline, and provides some concrete examples with PCA.
Real-world applications often require complicated pipeline that do not progress sequentially. For example, many experiments have demonstrated that bagging is a powerful method to improve model performance. Bagging can be thought of as a non-sequential pipeline where a learner is replicated, each separate learner is trained and makes predictions, and their results are combined. This is non-sequential as data is not flowing sequentially through the pipeline but is instead passed to all learners (who may then subsample the data) and then recombined, thus creating a pipeline where operations have multiple inputs and outputs. Pipeline operations also have hyperparameters that can be set and tuned to improve model performance. Moreover the choice of operations to include in a pipeline can also be tuned, known as combined algorithm selection and hyperparameter optimization (CASH).
This chapter looks at more advanced uses of mlr3pipelines. This is put into practice by demonstrating how to build a bagging and stacking pipeline from scratch, as well as how to access common pipelines that are readily available in mlr3pipelines. The chapter then looks at tuning pipelines and CASH.
Parallelization is often required to efficiently run machine learning models, which means models are run simultaneously on multiple CPU cores, CPUs, or computational nodes. This chapter begins by demonstrating how mlr3 uses the future package for parallelization and how different ‘plans’ can be applied to mlr3 experiments.
In large machine learning experiments, it is common for a model to error during training or predicting. This is because the algorithms have to process arbitrary data, and not all eventualities can always be handled. It is therefore imperative to have robust methods for encapsulating and dealing with errors. This chapter builds on what has been briefly seen in Chapter 5 to discuss error handling and logging, including how to make use of fallback learners in experiments.
Large experiments may also require data to be handled in different formats and to prevent all the data being loaded into memory. This chapter discussed different ‘backends’ that can be used for mlr3 Tasks, including interfacing with DuckDB and SQL.
Finally, this chapter demonstrates how to extend classes in mlr3 by using the Measure class as an example. This may be of particular interest to readers who want to create new Measures or Learners.
In the field of machine learning, benchmark experiments are used to evaluate and compare the performance of algorithms. To draw robust conclusions, benchmark experiments often have to be ‘large-scale’, which means including many datasets, learners, and possibly measures. Finding datasets can be difficult and the choice of dataset impacts conclusions that can be drawn. Conducting large-scale benchmark experiments is also complex as they are usually computationally intensive. It is therefore common to make use of high-performance computing clusters to efficiently run the experiment. Finally once these experiments are run, analysis of experiments usually requires more than a single score from a given performance measure, and therefore statistical test are often employed.
This chapter introduces mlr3oml for interfacing the OpenML database for accessing data and tasks. It then continues by discussing how to run experiments on high-performance computing clusters using batchtools and mlr3batchmark. Finally, mlr3benchmark is introduced for statistical analysis including Friedman tests and critical difference diagrams.
The increasing availability of data and software frameworks to create predictive models has allowed the widespread adoption of machine learning in many applications. However, high predictive performance of such models often comes at the cost of interpretability. Machine learning interpretation methods can be useful for several purposes: 1) gaining global insights into a model (e.g., feature importance); 2) model improvement if flaws were identified (e.g., unexpected reliance on a certain feature); 3) understanding individual predictions. Several model-agnostic methods have been developed including feature permutation, Shapleys, and LIME.
This chapter presents the packages iml, counterfactuals, and DALEX, which implement model-agnostic interpretation methods. Throughout the chapter an xgboost is trained on the german credit dataset to understand how predictions are made and why. The chapter starts with discussing the iml package and the theory behind the discussed methods, as well as how to practically use the interface. It then moves to counterfactuals and the benefits of counterfactual analysis, including methods What-If and MOC. Finally, DALEX is introduced, which includes similar methods to iml but with a different design, hence users can make use of either package depending on their design preference.
mlr3 is an award-winning ecosystem of R packages that have been developed to enable state-of-the-art machine learning capabilities in R. Applied Machine Learning Using mlr3 in R gives an overview of flexible and robust machine learning methods, with an emphasis on how to implement them using mlr3 in R. It covers various key topics, including basic machine learning tasks, such as building and evaluating a predictive model; hyperparameter tuning of machine learning approaches to obtain peak performance; building machine learning pipelines that perform complex operations such as pre-processing followed by modelling followed by aggregation of predictions; and extending the mlr3 ecosystem with custom learners, measures, or pipeline components. The book is primarily aimed at researchers, practitioners, and graduate students who use machine learning or who are interested in using it. It can be used as a textbook for an introductory or advanced machine learning class that uses R, as a reference for people who work with machine learning methods, and in industry for exploratory experiments in machine learning.
A growing body of literature in fairness-aware machine learning (fairML) aims to mitigate machine learning (ML)-related unfairness in automated decision-making (ADM) by defining metrics that measure fairness of an ML model and by proposing methods to ensure that trained ML models achieve low scores on these metrics. However, the underlying concept of fairness, i.e., the question of what fairness is, is rarely discussed, leaving a significant gap between centuries of philosophical discussion and the recent adoption of the concept in the ML community. In this work, we try to bridge this gap by formalizing a consistent concept of fairness and by translating the philosophical considerations into a formal framework for the training and evaluation of ML models in ADM systems. We argue that fairness problems can arise even without the presence of protected attributes (PAs), and point out that fairness and predictive performance are not irreconcilable opposites, but that the latter is necessary to achieve the former. Furthermore, we argue why and how causal considerations are necessary when assessing fairness in the presence of PAs by proposing a fictitious, normatively desired (FiND) world in which PAs have no causal effects. In practice, this FiND world must be approximated by a warped world in which the causal effects of the PAs are removed from the real-world data. Finally, we achieve greater linguistic clarity in the discussion of fairML. We outline algorithms for practical applications and present illustrative experiments on COMPAS data.
The field of computational biology has been enhanced by deep learning models, which hold great promise for revolutionizing domains such as protein folding and drug discovery. Recent studies have underscored the tremendous potential of these models, particularly in the realm of gene regulation and the more profound understanding of the non-coding regions of the genome. On the other hand, this raises significant concerns about the reliability and efficacy of such models, which have their own biases by design, along with those learned from the data. Uncertainty quantification allows us to measure where the system is confident and know when it can be trusted. In this paper, we study several uncertainty quantification methods with respect to a multi-target regression task, specifically predicting regulatory activity profiles using DNA sequence data. Using the Basenji model, we investigate how such methods can improve in-domain generalization, out-of-distribution detection, and provide coverage guarantees on prediction intervals.
Feature attribution explains neural network outputs by identifying relevant input features. How do we know if the identified features are indeed relevant to the network? This notion is referred to as faithfulness, an essential property that reflects the alignment between the identified (attributed) features and the features used by the model. One recent trend to test faithfulness is to design the data such that we know which input features are relevant to the label and then train a model on the designed data. Subsequently, the identified features are evaluated by comparing them with these designed ground truth features. However, this idea has the underlying assumption that the neural network learns to use all and only these designed features, while there is no guarantee that the learning process trains the network in this way. In this paper, we solve this missing link by explicitly designing the neural network by manually setting its weights, along with designing data, so we know precisely which input features in the dataset are relevant to the designed network. Thus, we can test faithfulness in AttributionLab, our designed synthetic environment, which serves as a sanity check and is effective in filtering out attribution methods. If an attribution method is not faithful in a simple controlled environment, it can be unreliable in more complex scenarios. Furthermore, the AttributionLab environment serves as a laboratory for controlled experiments through which we can study feature attribution methods, identify issues, and suggest potential improvements.
While existing neural network-based approaches have shown promising results in Handwritten Text Recognition (HTR) for high-resource languages and standardized/machine-written text, their application to low-resource languages often presents challenges, resulting in reduced effectiveness. In this paper, we propose an innovative HTR approach that leverages the Transformer architecture for recognizing handwritten Old Occitan language. Given the limited availability of data, which comprises only word pairs of graphical variants and lemmas, we develop and rely on elaborate data augmentation techniques for both text and image data. Our model combines a custom-trained Swin image encoder with a BERT text decoder, which we pre-train using a large-scale augmented synthetic data set and fine-tune on the small human-labeled data set. Experimental results reveal that our approach surpasses the performance of current state-of-the-art models for Old Occitan HTR, including open-source Transformer-based models such as a fine-tuned TrOCR and commercial applications like Google Cloud Vision. To nurture further research and development, we make our models, data sets, and code publicly available.
Three fields revolving around the question of how to cope with limited amounts of labeled data are Deep Active Learning (DAL), deep Constrained Clustering (CC), and Weakly Supervised Learning (WSL). DAL tackles the problem by adaptively posing the question of which data samples to annotate next in order to achieve the best incremental learning improvement, although it suffers from several limitations that hinder its deployment in practical settings. We point out how CC algorithms and WSL could be employed to overcome these limitations and increase the practical applicability of DAL research. Specifically, we discuss the opportunities to use the class discovery capabilities of CC and the possibility of further reducing human annotation efforts by utilizing WSL. We argue that the practical applicability of DAL algorithms will benefit from employing CC and WSL methods for the learning and labeling process. We inspect the overlaps between the three research areas and identify relevant and exciting research questions at the intersection of these areas.
Hyperparameter optimization (HPO) methods can determine well-performing hyperparameter configurations efficiently but often lack insights and transparency. We propose to apply symbolic regression to meta-data collected with Bayesian optimization (BO) during HPO. In contrast to prior approaches explaining the effects of hyperparameters on model performance, symbolic regression allows for obtaining explicit formulas quantifying the relation between hyperparameter values and model performance. Overall, our approach aims to make the HPO process more explainable and human-centered, addressing the needs of multiple user groups: First, providing insights into the HPO process can support data scientists and machine learning practitioners in their decisions when using and interacting with HPO tools. Second, obtaining explicit formulas and inspecting their properties could help researchers understand the HPO loss landscape better. In an experimental evaluation, we find that naively applying symbolic regression directly to meta-data collected during HPO is affected by the sampling bias introduced by BO. However, the true underlying loss landscape can be approximated by fitting the symbolic regression on the surrogate model trained during BO. By penalizing longer formulas, symbolic regression furthermore allows the user to decide how to balance the accuracy and explainability of the resulting formulas.
Artificial benchmark functions are commonly used in optimization research because of their ability to rapidly evaluate potential solutions, making them a preferred substitute for real-world problems. However, these benchmark functions have faced criticism for their limited resemblance to real-world problems. In response, recent research has focused on automatically generating new benchmark functions for areas where established test suites are inadequate. These approaches have limitations, such as the difficulty of generating new benchmark functions that exhibit exploratory landscape analysis (ELA) features beyond those of existing benchmarks. The objective of this work is to develop a method for generating benchmark functions for single-objective continuous optimization with user-specified structural properties. Specifically, we aim to demonstrate a proof of concept for a method that uses an ELA feature vector to specify these properties in advance. To achieve this, we begin by generating a random sample of decision space variables and objective values. We then adjust the objective values using CMA-ES until the corresponding features of our new problem match the predefined ELA features within a specified threshold. By iteratively transforming the landscape in this way, we ensure that the resulting function exhibits the desired properties. To create the final function, we use the resulting point cloud as training data for a simple neural network that produces a function exhibiting the target ELA features. We demonstrate the effectiveness of this approach by replicating the existing functions of the well-known BBOB suite and creating new functions with ELA feature values that are not present in BBOB.
Deep learning has enabled outstanding progress on bioinformatics datasets and a variety of tasks, such as protein structure prediction, identification of regulatory regions, genome annotation, and interpretation of the noncoding genome. The layout and configuration of neural networks used for these tasks have mostly been developed manually by human experts, which is a time-consuming and error-prone process. Therefore, there is growing interest in automated neural architecture search (NAS) methods in bioinformatics. In this paper, we present a novel search space for NAS algorithms that operate on genome data, thus creating extensions for existing NAS algorithms for sequence data that we name Genome-DARTS, Genome-P-DARTS, Genome-BONAS, Genome-SH, and Genome-RS. Moreover, we introduce two novel NAS algorithms, CWP-DARTS and EDPDARTS, that build on and extend the idea of P-DARTS. We evaluate the presented methods and compare them to manually designed neural architectures on a widely used genome sequence machine learning task to show that NAS methods can be adapted well for bioinformatics sequence datasets. Our experiments show that architectures optimized by our NAS methods outperform manually developed architectures while having significantly fewer parameters.
Feature attribution methods attempt to explain neural network predictions by identifying relevant features. However, establishing a cohesive framework for assessing feature attribution remains a challenge. There are several views through which we can evaluate attributions. One principal lens is to observe the effect of perturbing attributed features on the model’s behavior (i.e., faithfulness). While providing useful insights, existing faithfulness evaluations suffer from shortcomings that we reveal in this paper. In this work, we propose two new perspectives within the faithfulness paradigm that reveal intuitive properties: soundness and completeness. Soundness assesses the degree to which attributed features are truly predictive features, while completeness examines how well the resulting attribution reveals all the predictive features. The two perspectives are based on a firm mathematical foundation and provide quantitative metrics that are computable through efficient algorithms. We apply these metrics to mainstream attribution methods, offering a novel lens through which to analyze and compare feature attribution methods.
Scientists and practitioners increasingly rely on machine learning to model data and draw conclusions. Compared to statistical modeling approaches, machine learning makes fewer explicit assumptions about data structures, such as linearity. However, their model parameters usually cannot be easily related to the data generating process. To learn about the modeled relationships, partial dependence (PD) plots and permutation feature importance (PFI) are often used as interpretation methods. However, PD and PFI lack a theory that relates them to the data generating process. We formalize PD and PFI as statistical estimators of ground truth estimands rooted in the data generating process. We show that PD and PFI estimates deviate from this ground truth due to statistical biases, model variance and Monte Carlo approximation errors. To account for model variance in PD and PFI estimation, we propose the learner-PD and the learner-PFI based on model refits, and propose corrected variance and confidence interval estimators.
Annotating costs of large corpora are still one of the main bottlenecks in empirical social science research. On the one hand, making use of the capabilities of domain transfer allows re-using annotated data sets and trained models. On the other hand, it is not clear how well domain transfer works and how reliable the results are for transfer across different dimensions. We explore the potential of domain transfer across geographical locations, languages, time, and genre in a large-scale database of political manifestos. First, we show the strong within-domain classification performance of fine-tuned transformer models. Second, we vary the genre of the test set across the aforementioned dimensions to test for the fine-tuned models’ robustness and transferability. For switching genres, we use an external corpus of transcribed speeches from New Zealand politicians while for the other three dimensions, custom splits of the Manifesto database are used. While BERT achieves the best scores in the initial experiments across modalities, DistilBERT proves to be competitive at a lower computational expense and is thus used for further experiments across time and country. The results of the additional analysis show that (Distil)BERT can be applied to future data with similar performance. Moreover, we observe (partly) notable differences between the political manifestos of different countries of origin, even if these countries share a language or a cultural background.
While recent advances in large-scale foundational models show promising results, their application to the medical domain has not yet been explored in detail. In this paper, we progress into the realms of large-scale modeling in medical synthesis by proposing Cheff - a foundational cascaded latent diffusion model, which generates highly-realistic chest radiographs providing state-of-the-art quality on a 1-megapixel scale. We further propose MaCheX, which is a unified interface for public chest datasets and forms the largest open collection of chest X-rays up to date. With Cheff conditioned on radiological reports, we further guide the synthesis process over text prompts and unveil the research area of report-to-chest-X-ray generation.
Katharina Rath
Dr.
* Former member
The Shapley Additive Global Importance (SAGE) value is a theoretically appealing interpretability method that fairly attributes global importance to a model’s features. However, its exact calculation requires the computation of the feature’s surplus performance contributions over an exponential number of feature sets. This is computationally expensive, particularly because estimating the surplus contributions requires sampling from conditional distributions. Thus, SAGE approximation algorithms only take a fraction of the feature sets into account. We propose $d$-SAGE, a method that accelerates SAGE approximation. $d$-SAGE is motivated by the observation that conditional independencies (CIs) between a feature and the model target imply zero surplus contributions, such that their computation can be skipped. To identify CIs, we leverage causal structure learning (CSL) to infer a graph that encodes (conditional) independencies in the data as $d$-separations. This is computationally more efficient because the expense of the one-time graph inference and the $d$-separation queries is negligible compared to the expense of surplus contribution evaluations. Empirically we demonstrate that $d$-SAGE enables the efficient and accurate estimation of SAGE values.
Despite all the benefits of automated hyperparameter optimization (HPO), most modern HPO algorithms are black-boxes themselves. This makes it difficult to understand the decision process which leads to the selected configuration, reduces trust in HPO, and thus hinders its broad adoption. Here, we study the combination of HPO with interpretable machine learning (IML) methods such as partial dependence plots. These techniques are more and more used to explain the marginal effect of hyperparameters on the black-box cost function or to quantify the importance of hyperparameters. However, if such methods are naively applied to the experimental data of the HPO process in a post-hoc manner, the underlying sampling bias of the optimizer can distort interpretations. We propose a modified HPO method which efficiently balances the search for the global optimum w.r.t. predictive performance and the reliable estimation of IML explanations of an underlying black-box function by coupling Bayesian optimization and Bayesian Algorithm Execution. On benchmark cases of both synthetic objectives and HPO of a neural network, we demonstrate that our method returns more reliable explanations of the underlying black-box without a loss of optimization performance.
Most machine learning algorithms are configured by a set of hyperparameters whose values must be carefully chosen and which often considerably impact performance. To avoid a time-consuming and irreproducible manual process of trial-and-error to find well-performing hyperparameter configurations, various automatic hyperparameter optimization (HPO) methods—for example, based on resampling error estimation for supervised machine learning—can be employed. After introducing HPO from a general perspective, this paper reviews important HPO methods, from simple techniques such as grid or random search to more advanced methods like evolution strategies, Bayesian optimization, Hyperband, and racing. This work gives practical recommendations regarding important choices to be made when conducting HPO, including the HPO algorithms themselves, performance evaluation, how to combine HPO with machine learning pipelines, runtime improvements, and parallelization.
Theresa Ullmann
Dr.
Biometry in Molecular Medicine
Algorithmic recourse recommendations, such as Karimi et al.’s (2021) causal recourse (CR), inform stakeholders of how to act to revert unfavorable decisions. However, there are ac- tions that lead to acceptance (i.e., revert the model’s deci- sion) but do not lead to improvement (i.e., may not revert the underlying real-world state). To recommend such actions is to recommend fooling the predictor. We introduce a novel method, Improvement-Focused Causal Recourse (ICR), which involves a conceptual shift: Firstly, we require ICR recommen- dations to guide toward improvement. Secondly, we do not tailor the recommendations to be accepted by a specific predic- tor. Instead, we leverage causal knowledge to design decision systems that predict accurately pre- and post-recourse. As a result, improvement guarantees translate into acceptance guar- antees. We demonstrate that given correct causal knowledge ICR, in contrast to existing approaches, guides toward both acceptance and improvement.
Our R (R Core Team, 2021) package dsBinVal implements the methodology explained by Schalk et al. (2022). It extends the ROC-GLM (Pepe, 2000) to distributed data by using techniques of differential privacy (Dwork et al., 2006) and the idea of sharing highly aggregated values only. The package also exports functionality to calculate distributed calibration curves and assess the calibration. Using the package allows us to evaluate a prognostic model based on a binary outcome using the DataSHIELD (Gaye et al., 2014) framework. Therefore, the main functionality makes it able to 1) compute the receiver operating characteristic (ROC) curve using the ROC-GLM from which 2) the area under the curve (AUC) and confidence intervals (CI) are derived to conduct hypothesis testing according to DeLong et al. (1988). Furthermore, 3) the calibration can be assessed distributively via calibration curves and the Brier score. Visualizing the approximated ROC curve, the AUC with confidence intervals, and the calibration curves using ggplot2 is also supported. Examples can be found in the README file of the repository.
The interpretation of feature importance in machine learning models is challenging when features are dependent. Permutation feature importance (PFI) ignores such dependencies, which can cause misleading interpretations due to extrapolation. A possible remedy is more advanced conditional PFI approaches that enable the assessment of feature importance conditional on all other features. Due to this shift in perspective and in order to enable correct interpretations, it is beneficial if the conditioning is transparent and comprehensible. In this paper, we propose a new sampling mechanism for the conditional distribution based on permutations in conditional subgroups. As these subgroups are constructed using tree-based methods such as transformation trees, the conditioning becomes inherently interpretable. This not only provides a simple and effective estimator of conditional PFI, but also local PFI estimates within the subgroups. In addition, we apply the conditional subgroups approach to partial dependence plots, a popular method for describing feature effects that can also suffer from extrapolation when features are dependent and interactions are present in the model. In simulations and a real-world application, we demonstrate the advantages of the conditional subgroup approach over existing methods: It allows to compute conditional PFI that is more true to the data than existing proposals and enables a fine-grained interpretation of feature effects and importance within the conditional subgroups.
This thesis explores the growing intersection of machine learning and causality through seven articles, offering new insights into how these fields can enhance one another. It addresses key topics, including adapting machine learning algorithms for heterogeneous treatment effect estimation, where combining causal and model-based forest elements improves performance across diverse datasets. Additionally, the thesis introduces advanced interpretability tools, proposing methods to generate multiple counterfactual and semi-factual explanations that aid in fairness assessments and address interpretability challenges. A modular R package developed in this work provides accessible tools for researchers to apply and compare counterfactual explanation methods, further bridging machine learning and causal inference for practical applications. (Shortened).
This thesis advances precision medicine by leveraging artificial intelligence to improve cancer immunotherapy development and tackle key challenges in clinical trials, where high failure rates often stem from insufficient understanding of patient and disease-specific factors. Through novel computational frameworks for cancer vaccine design, methods for handling imbalanced biological data, and hybrid modeling techniques that combine clinical data with imaging, this work demonstrates AI’s potential to personalize and accelerate therapeutic development. These contributions collectively pave the way for more effective, targeted treatments, potentially reducing the time and cost to bring new therapies to market. (Shortened).
This thesis addresses methods for training machine learning models with limited labeled data, focusing on semi-supervised, positive unlabeled, constrained clustering, and transfer learning. It explores deep semi-supervised learning, particularly in time series and medical imaging contexts, and investigates positive unlabeled learning methods that utilize predictive uncertainty for self-training. The thesis also introduces weakly supervised learning for constrained clustering, combining it with semi-supervised approaches, and applies transfer learning to tasks with varying granularity in medical domains. (Shortened).
This thesis addresses the challenges of interpreting machine learning models, particularly focusing on the limitations of global explanation methods. It identifies two key issues: the human-incomprehensibility of high-dimensional outputs and the misleading interpretations caused by aggregation bias. The thesis proposes solutions to these problems, such as grouping features for simpler interpretations and using recursive partitioning algorithms to provide regional explanations, ensuring more accurate and understandable insights into model behavior. (Shortened.)
This thesis addresses fundamental challenges in the field of interpretable machine learning (IML), particularly the lack of a clear definition of ‘interpretability’, the potential misinterpretation of existing methods, and the computational difficulties of conditional-sampling-based techniques. By disentangling the different goals of interpretability, we provide clearer guidelines for deriving target estimands, with specific examples such as recourse and scientific inference. Additionally, we propose formal interpretation rules for feature importance, highlight common pitfalls in IML, and introduce efficient methods for estimating conditional-sampling techniques by leveraging the data’s dependence structure, with a strong emphasis on causal inference to improve clarity and computational efficiency. (Shortened.)
This thesis explores the intersection of Automated Machine Learning (AutoML) and explainable AI, addressing the need for transparency at multiple levels: the model, the learning algorithm, and the AutoML system itself. The work develops methods for enhancing model explainability through multi-objective hyperparameter optimization (HPO) and introduces new techniques to understand the effects of hyperparameters and optimizers within AutoML systems. These contributions advance the field by providing more interpretable and reliable tools for AutoML, ultimately increasing the accessibility and trustworthiness of machine learning models and their deployment. (Shortened.)
This thesis focuses on domain adaptation and cross-modal retrieval to address the challenges posed by domain shifts in machine learning applications. Specifically, it explores techniques for online handwriting recognition and visual self-localization. For handwriting recognition, the study uses deep metric learning and optimal transport to reduce domain shifts between different writing styles and writing modalities, while for visual self-localization, it enhances pose prediction through auxiliary tasks and representation learning fusion techniques to improve accuracy across sensor modalities. (Shortened.)
This thesis focuses on democratizing access to machine learning (ML) by improving automated machine learning (AutoML) systems and making ML tools more accessible to non-experts. Key contributions include methods to accelerate hyperparameter optimization by learning from previous experiments, the integration of fairness considerations in AutoML, and the development of software packages such as mlr3pipelines for creating machine learning pipelines and mlr3fairness for auditing and debiasing models. The thesis also includes tools for estimating and mitigating model fairness, such as the mcboost package for multi-calibration, addressing both the technical and ethical challenges of widespread ML deployment. (Shortened.)
This thesis focuses on enhancing component-wise boosting (CWB) by improving its efficiency and usability, particularly in high-dimensional feature spaces and distributed data settings. Key contributions include the optimization of the CWB algorithm through Nesterov’s momentum for faster fitting and reduced memory usage, as well as the development of the Autocompboost framework to integrate CWB with AutoML, emphasizing model interpretability. Additionally, the thesis introduces methods for evaluating binary classification models on distributed data using ROC analysis, and presents several R packages (compboost, dsCWB, Autocompboost, dsBinVal) that implement these advances. (Shortened.)
Epitope vaccines are a promising approach for precision treatment of pathogens, cancer, autoimmune diseases, and allergies. Effectively designing such vaccines requires accurate proteasomal cleavage prediction to ensure that the epitopes included in the vaccine trigger an immune response. The performance of proteasomal cleavage predictors has been steadily improving over the past decades owing to increasing data availability and methodological advances. In this review, we summarize the current proteasomal cleavage prediction landscape and, in light of recent progress in the field of deep learning, develop and compare a wide range of recent architectures and techniques, including long short-term memory (LSTM), transformers, and convolutional neural networks (CNN), as well as four different denoising techniques. All open-source cleavage predictors re-trained on our dataset performed within two AUC percentage points. Our comprehensive deep learning architecture benchmark improved performance by 1.7 AUC percentage points, while closed-source predictors performed considerably worse. We found that a wide range of architectures and training regimes all result in very similar performance, suggesting that the specific modeling approach employed has a limited impact on predictive performance compared to the specifics of the dataset employed. We speculate that the noise and implicit nature of data acquisition techniques used for training proteasomal cleavage prediction models and the complexity of biological processes of the antigen processing pathway are the major limiting factors. While biological complexity can be tackled by more data and, to a lesser extent, better models, noise and randomness inherently limit the maximum achievable predictive performance.
Automated hyperparameter optimization (HPO) has gained great popularity and is an important component of most automated machine learning frameworks. However, the process of designing HPO algorithms is still an unsystematic and manual process: new algorithms are often built on top of prior work, where limitations are identified and improvements are proposed. Even though this approach is guided by expert knowledge, it is still somewhat arbitrary. The process rarely allows for gaining a holistic understanding of which algorithmic components drive performance and carries the risk of overlooking good algorithmic design choices. We present a principled approach to automated benchmark-driven algorithm design applied to multifidelity HPO (MF-HPO). First, we formalize a rich space of MF-HPO candidates that includes, but is not limited to, common existing HPO algorithms and then present a configurable framework covering this space. To find the best candidate automatically and systematically, we follow a programming-by-optimization approach and search over the space of algorithm candidates via Bayesian optimization. We challenge whether the found design choices are necessary or could be replaced by more naive and simpler ones by performing an ablation analysis. We observe that using a relatively simple configuration (in some ways, simpler than established methods) performs very well as long as some critical configuration parameters are set to the right value.
The goal of this work is to generate large statistically representative data sets to train machine learning models for disruption prediction provided by data from few existing discharges. Such a comprehensive training database is important to achieve satisfying and reliable prediction results in artificial neural network classifiers. Here, we aim for a robust augmentation of the training database for multivariate time series data using Student $t$ process regression. We apply Student $t$ process regression in a state space formulation via Bayesian filtering to tackle challenges imposed by outliers and noise in the training data set and to reduce the computational complexity. Thus, the method can also be used if the time resolution is high. We use an uncorrelated model for each dimension and impose correlations afterwards via colouring transformations. We demonstrate the efficacy of our approach on plasma diagnostics data of three different disruption classes from the DIII-D tokamak. To evaluate if the distribution of the generated data is similar to the training data, we additionally perform statistical analyses using methods from time series analysis, descriptive statistics and classic machine learning clustering algorithms.
Katharina Rath
Dr.
* Former member
Recent years have witnessed tremendously improved efficiency of Automated Machine Learning (AutoML), especially Automated Deep Learning (AutoDL) systems, but recent work focuses on tabular, image, or NLP tasks. So far, little attention has been paid to general AutoDL frameworks for time series forecasting, despite the enormous success in applying different novel architectures to such tasks. In this paper, we propose an efficient approach for the joint optimization of neural architecture and hyperparameters of the entire data processing pipeline for time series forecasting. In contrast to common NAS search spaces, we designed a novel neural architecture search space covering various state-of-the-art architectures, allowing for an efficient macro-search over different DL approaches. To efficiently search in such a large configuration space, we use Bayesian optimization with multi-fidelity optimization. We empirically study several different budget types enabling efficient multi-fidelity optimization on different forecasting datasets. Furthermore, we compared our resulting system, against several established baselines and show that it significantly outperforms all of them across several datasets.
When developing and analyzing new hyperparameter optimization (HPO) methods, it is vital to empirically evaluate and compare them on well-curated benchmark suites. In this work, we list desirable properties and requirements for such benchmarks and propose a new set of challenging and relevant multifidelity HPO benchmark problems motivated by these requirements. For this, we revisit the concept of surrogate-based benchmarks and empirically compare them to more widely-used tabular benchmarks, showing that the latter ones may induce bias in performance estimation and ranking of HPO methods. We present a new surrogate-based benchmark suite for multifidelity HPO methods consisting of 9 benchmark collections that constitute over 700 multifidelity HPO problems in total. All our benchmarks also allow for querying of multiple optimization targets, enabling the benchmarking of multi-objective HPO. We examine and compare our benchmark suite with respect to the defined requirements and show that our benchmarks provide viable additions to existing suites.
Neural architecture search (NAS) has been studied extensively and has grown to become a research field with substantial impact. While classical single-objective NAS searches for the architecture with the best performance, multi-objective NAS considers multiple objectives that should be optimized simultaneously, e.g., minimizing resource usage along the validation error. Although considerable progress has been made in the field of multi-objective NAS, we argue that there is some discrepancy between the actual optimization problem of practical interest and the optimization problem that multi-objective NAS tries to solve. We resolve this discrepancy by formulating the multi-objective NAS problem as a quality diversity optimization (QDO) problem and introduce three quality diversity NAS optimizers (two of them belonging to the group of multifidelity optimizers), which search for high-performing yet diverse architectures that are optimal for application-specific niches, e.g., hardware constraints. By comparing these optimizers to their multi-objective counterparts, we demonstrate that quality diversity NAS in general outperforms multi-objective NAS with respect to quality of solutions and efficiency. We further show how applications and future NAS research can thrive on QDO.
Interpretable machine learning has become a very active area of research due to the rising popularity of machine learning algorithms and their inherently challenging interpretability. Most work in this area has been focused on the interpretation of single features in a model. However, for researchers and practitioners, it is often equally important to quantify the importance or visualize the effect of feature groups. To address this research gap, we provide a comprehensive overview of how existing model-agnostic techniques can be defined for feature groups to assess the grouped feature importance, focusing on permutation-based, refitting, and Shapley-based methods. We also introduce an importance-based sequential procedure that identifies a stable and well-performing combination of features in the grouped feature space. Furthermore, we introduce the combined features effect plot, which is a technique to visualize the effect of a group of features based on a sparse, interpretable linear combination of features. We used simulation studies and real data examples to analyze, compare, and discuss these methods.
Despite all the benefits of automated hyperparameter optimization (HPO), most modern HPO algorithms are black-boxes themselves. This makes it difficult to understand the decision process which leads to the selected configuration, reduces trust in HPO, and thus hinders its broad adoption. Here, we study the combination of HPO with interpretable machine learning (IML) methods such as partial dependence plots. These techniques are more and more used to explain the marginal effect of hyperparameters on the black-box cost function or to quantify the importance of hyperparameters. However, if such methods are naively applied to the experimental data of the HPO process in a post-hoc manner, the underlying sampling bias of the optimizer can distort interpretations. We propose a modified HPO method which efficiently balances the search for the global optimum w.r.t. predictive performance emph{and} the reliable estimation of IML explanations of an underlying black-box function by coupling Bayesian optimization and Bayesian Algorithm Execution. On benchmark cases of both synthetic objectives and HPO of a neural network, we demonstrate that our method returns more reliable explanations of the underlying black-box without a loss of optimization performance.
Survival analysis (SA) is an active field of research that is concerned with time-to-event outcomes and is prevalent in many domains, particularly biomedical applications. Despite its importance, SA remains challenging due to small-scale data sets and complex outcome distributions, concealed by truncation and censoring processes. The piecewise exponential additive mixed model (PAMM) is a model class addressing many of these challenges, yet PAMMs are not applicable in high-dimensional feature settings or in the case of unstructured or multimodal data. We unify existing approaches by proposing DeepPAMM, a versatile deep learning framework that is well-founded from a statistical point of view, yet with enough flexibility for modeling complex hazard structures. We illustrate that DeepPAMM is competitive with other machine learning approaches with respect to predictive performance while maintaining interpretability through benchmark experiments and an extended case study.
Machine learning models can automatically learn complex relationships, such as non-linear and interaction effects. Interpretable machine learning methods such as partial dependence plots visualize marginal feature effects but may lead to misleading interpretations when feature interactions are present. Hence, employing additional methods that can detect and measure the strength of interactions is paramount to better understand the inner workings of machine learning models. We demonstrate several drawbacks of existing global interaction detection approaches, characterize them theoretically, and evaluate them empirically. Furthermore, we introduce regional effect plots with implicit interaction detection, a novel framework to detect interactions between a feature of interest and other features. The framework also quantifies the strength of interactions and provides interpretable and distinct regions in which feature effects can be interpreted more reliably, as they are less confounded by interactions. We prove the theoretical eligibility of our method and show its applicability on various simulation and real-world examples.
Automated hyperparameter optimization (HPO) can support practitioners to obtain peak performance in machine learning models. However, there is often a lack of valuable insights into the effects of different hyperparameters on the final model performance. This lack of explainability makes it difficult to trust and understand the automated HPO process and its results. We suggest using interpretable machine learning (IML) to gain insights from the experimental data obtained during HPO with Bayesian optimization (BO). BO tends to focus on promising regions with potential high-performance configurations and thus induces a sampling bias. Hence, many IML techniques, such as the partial dependence plot (PDP), carry the risk of generating biased interpretations. By leveraging the posterior uncertainty of the BO surrogate model, we introduce a variant of the PDP with estimated confidence bands. We propose to partition the hyperparameter space to obtain more confident and reliable PDPs in relevant sub-regions. In an experimental study, we provide quantitative evidence for the increased quality of the PDPs within sub-regions.
In practice, machine learning (ML) workflows require various different steps, from data preprocessing, missing value imputation, model selection, to model tuning as well as model evaluation. Many of these steps rely on human ML experts. AutoML - the field of automating these ML pipelines - tries to help practitioners to apply ML off-the-shelf without any expert knowledge. Most modern AutoML systems like auto-sklearn, H20-AutoML or TPOT aim for high predictive performance, thereby generating ensembles that consist almost exclusively of black-box models. This, in turn, makes the interpretation for the layperson more intricate and adds another layer of opacity for users. We propose an AutoML system that constructs an interpretable additive model that can be fitted using a highly scalable componentwise boosting algorithm. Our system provides tools for easy model interpretation such as visualizing partial effects and pairwise interactions, allows for a straightforward calculation of feature importance, and gives insights into the required model complexity to fit the given task. We introduce the general framework and outline its implementation autocompboost. To demonstrate the frameworks efficacy, we compare autocompboost to other existing systems based on the OpenML AutoML-Benchmark. Despite its restriction to an interpretable model space, our system is competitive in terms of predictive performance on most data sets while being more user-friendly and transparent.
Algorithmic recourse explanations inform stakeholders on how to act to revert unfavorable predictions. However, in general ML models do not predict well in interventional distributions. Thus, an action that changes the prediction in the desired way may not lead to an improvement of the underlying target. Such recourse is neither meaningful nor robust to model refits. Extending the work of Karimi et al. (2021), we propose meaningful algorithmic recourse (MAR) that only recommends actions that improve both prediction and target. We justify this selection constraint by highlighting the differences between model audit and meaningful, actionable recourse explanations. Additionally, we introduce a relaxation of MAR called effective algorithmic recourse (EAR), which, under certain assumptions, yields meaningful recourse by only allowing interventions on causes of the target.
Hyperparameter optimization in machine learning (ML) deals with the problem of empirically learning an optimal algorithm configuration from data, usually formulated as a black-box optimization problem. In this work, we propose a zero-shot method to meta-learn symbolic default hyperparameter configurations that are expressed in terms of the properties of the dataset. This enables a much faster, but still data-dependent, configuration of the ML algorithm, compared to standard hyperparameter optimization approaches. In the past, symbolic and static default values have usually been obtained as hand-crafted heuristics. We propose an approach of learning such symbolic configurations as formulas of dataset properties from a large set of prior evaluations on multiple datasets by optimizing over a grammar of expressions using an evolutionary algorithm. We evaluate our method on surrogate empirical performance models as well as on real data across 6 ML algorithms on more than 100 datasets and demonstrate that our method indeed finds viable symbolic defaults.
We propose a versatile framework for survival analysis that combines advanced concepts from statistics with deep learning. The presented framework is based on piecewise expo-nential models and thereby supports various survival tasks, such as competing risks and multi-state modeling, and further allows for estimation of time-varying effects and time-varying features. To also include multiple data sources and higher-order interaction effects into the model, we embed the model class in a neural network and thereby enable the si-multaneous estimation of both inherently interpretable structured regression inputs as well as deep neural network components which can potentially process additional unstructured data sources. A proof of concept is provided by using the framework to predict Alzheimer’s disease progression based on tabular and 3D point cloud data and applying it to synthetic data.
Interpretable Machine Learning (IML) methods are used to gain insight into the relevance of a feature of interest for the performance of a model. Commonly used IML methods differ in whether they consider features of interest in isolation, e.g., Permutation Feature Importance (PFI), or in relation to all remaining feature variables, e.g., Conditional Feature Importance (CFI). As such, the perturbation mechanisms inherent to PFI and CFI represent extreme reference points. We introduce Relative Feature Importance (RFI), a generalization of PFI and CFI that allows for a more nuanced feature importance computation beyond the PFI versus CFI dichotomy. With RFI, the importance of a feature relative to any other subset of features can be assessed, including variables that were not available at training time. We derive general interpretation rules for RFI based on a detailed theoretical analysis of the implications of relative feature relevance, and demonstrate the method’s usefulness on simulated examples.
Computational reproducibility is a corner stone for sound and credible research. Especially in complex statistical analyses—such as the analysis of longitudinal data—reproducing results is far from simple, especially if no source code is available. In this work we aimed to reproduce analyses of longitudinal data of 11 articles published in PLOS ONE. Inclusion criteria were the availability of data and author consent. We investigated the types of methods and software used and whether we were able to reproduce the data analysis using open source software. Most articles provided overview tables and simple visualisations. Generalised Estimating Equations (GEEs) were the most popular statistical models among the selected articles. Only one article used open source software and only one published part of the analysis code. Replication was difficult in most cases and required reverse engineering of results or contacting the authors. For three articles we were not able to reproduce the results, for another two only parts of them. For all but two articles we had to contact the authors to be able to reproduce the results. Our main learning is that reproducing papers is difficult if no code is supplied and leads to a high burden for those conducting the reproductions. Open data policies in journals are good, but to truly boost reproducibility we suggest adding open code policies.
We present an empirical study of debiasing methods for classifiers, showing that debiasers often fail in practice to generalize out-of-sample, and can in fact make fairness worse rather than better. A rigorous evaluation of the debiasing treatment effect requires extensive cross-validation beyond what is usually done. We demonstrate that this phenomenon can be explained as a consequence of bias-variance trade-off, with an increase in variance necessitated by imposing a fairness constraint. Follow-up experiments validate the theoretical prediction that the estimation variance depends strongly on the base rates of the protected class. Considering fairness–performance trade-offs justifies the counterintuitive notion that partial debiasing can actually yield better results in practice on out-of-sample data.
All optimization needs some kind of prior over the functions it is optimizing over. We used a large computing cluster to collect empirical data about the behavior of ML performance, by randomly sampling hyperparameter values and performing cross-validation. We also collected information about cross-validation error by performing some evaluations multiple times, and information about progression of performance with respect to training data size by performing some evaluations on data subsets. We present how we collected data, make some preliminary analyses on the surrogate models that can be built with them, and give an outlook over interesting analyses this should enable.
Both feature selection and hyperparameter tuning are key tasks in machine learning. Hyperparameter tuning is often useful to increase model performance, while feature selection is undertaken to attain sparse models. Sparsity may yield better model interpretability and lower cost of data acquisition, data handling and model inference. While sparsity may have a beneficial or detrimental effect on predictive performance, a small drop in performance may be acceptable in return for a substantial gain in sparseness. We therefore treat feature selection as a multi-objective optimization task. We perform hyperparameter tuning and feature selection simultaneously because the choice of features of a model may influence what hyperparameters perform well. We present, benchmark, and compare two different approaches for multi-objective joint hyperparameter optimization and feature selection: The first uses multi-objective model-based optimization. The second is an evolutionary NSGA-II-based wrapper approach to feature selection which incorporates specialized sampling, mutation and recombination operators. Both methods make use of parameterized filter ensembles. While model-based optimization needs fewer objective evaluations to achieve good performance, it incurs computational overhead compared to the NSGA-II, so the preferred choice depends on the cost of evaluating a model on given data.
In many application areas, prediction rules trained based on high-dimensional data are subsequently applied to make predictions for observations from other sources, but they do not always perform well in this setting. This is because data sets from different sources can feature (slightly) differing distributions, even if they come from similar populations. In the context of high-dimensional data and beyond, most prediction methods involve one or several tuning parameters. Their values are commonly chosen by maximizing the cross-validated prediction performance on the training data. This procedure, however, implicitly presumes that the data to which the prediction rule will be ultimately applied, follow the same distribution as the training data. If this is not the case, less complex prediction rules that slightly underfit the training data may be preferable. Indeed, a tuning parameter does not only control the degree of adjustment of a prediction rule to the training data, but also, more generally, the degree of adjustment to the distribution of the training data. On the basis of this idea, in this paper we compare various approaches including new procedures for choosing tuning parameter values that lead to better generalizing prediction rules than those obtained based on cross-validation. Most of these approaches use an external validation data set. In our extensive comparison study based on a large collection of 15 transcriptomic data sets, tuning on external data and robust tuning with a tuned robustness parameter are the two approaches leading to better generalizing prediction rules.
Time series classification problems have drawn increasing attention in the machine learning and statistical community. Closely related is the field of functional data analysis (FDA): it refers to the range of problems that deal with the analysis of data that is continuously indexed over some domain. While often employing different methods, both fields strive to answer similar questions, a common example being classification or regression problems with functional covariates. We study methods from functional data analysis, such as functional generalized additive models, as well as functionality to concatenate (functional-) feature extraction or basis representations with traditional machine learning algorithms like support vector machines or classification trees. In order to assess the methods and implementations, we run a benchmark on a wide variety of representative (time series) data sets, with in-depth analysis of empirical results, and strive to provide a reference ranking for which method(s) to use for non-expert practitioners. Additionally, we provide a software framework in R for functional data analysis for supervised learning, including machine learning and more linear approaches from statistics. This allows convenient access, and in connection with the machine-learning toolbox mlr, those methods can now also be tuned and benchmarked.
Post-hoc model-agnostic interpretation methods such as partial dependence plots can be employed to interpret complex machine learning models. While these interpretation methods can be applied regardless of model complexity, they can produce misleading and verbose results if the model is too complex, especially w.r.t. feature interactions. To quantify the complexity of arbitrary machine learning models, we propose model-agnostic complexity measures based on functional decomposition: number of features used, interaction strength and main effect complexity. We show that post-hoc interpretation of models that minimize the three measures is more reliable and compact. Furthermore, we demonstrate the application of these measures in a multi-objective optimization approach which simultaneously minimizes loss and complexity.
AutoML systems are currently rising in popularity, as they can build powerful models without human oversight. They often combine techniques from many different sub-fields of machine learning in order to find a model or set of models that optimize a user-supplied criterion, such as predictive performance. The ultimate goal of such systems is to reduce the amount of time spent on menial tasks, or tasks that can be solved better by algorithms while leaving decisions that require human intelligence to the end-user. In recent years, the importance of other criteria, such as fairness and interpretability, and many others have become more and more apparent. Current AutoML frameworks either do not allow to optimize such secondary criteria or only do so by limiting the system’s choice of models and preprocessing steps. We propose to optimize additional criteria defined by the user directly to guide the search towards an optimal machine learning pipeline. In order to demonstrate the need and usefulness of our approach, we provide a simple multi-criteria AutoML system and showcase an exemplary application.
Multi-output prediction deals with the prediction of several targets of possibly diverse types. One way to address this problem is the so called problem transformation method. This method is often used in multi-label learning, but can also be used for multi-output prediction due to its generality and simplicity. In this paper, we introduce an algorithm that uses the problem transformation method for multi-output prediction, while simultaneously learning the dependencies between target variables in a sparse and interpretable manner. In a first step, predictions are obtained for each target individually. Target dependencies are then learned via a component-wise boosting approach. We compare our new method with similar approaches in a benchmark using multi-label, multivariate regression and mixed-type datasets.
This cumulative dissertation consists of five articles divided into three parts. The first part extends the mlr package in R to implement and benchmark multilabel classification methods. The second part focuses on simplifying benchmark experiments with OpenML.org, introducing the OpenML R package and the OpenML100 benchmarking suite for standardized dataset and result management. The third part addresses model evaluation and interpretability, proposing the residual-based predictiveness (RBP) curve to improve upon the predictiveness curve and introducing new visualization tools, including the Shapley feature importance (SFIMP) measure for model interpretation. (Shortened.)
This thesis focuses on automating model selection in AutoML, specifically through gradient boosting techniques like gradient tree and component-wise boosting. It addresses challenges in hyperparameter optimization using Bayesian methods, introduces a new feature selection technique, and proposes an AutoML approach that simplifies the process while maintaining accuracy. Four R packages were developed: mlrMBO for Bayesian optimization, autoxgboost for AutoML, compboost for component-wise boosting, and gamboostLSS for generalized additive models. (Shortened.)
©all images: LMU | TUM