Home  | News

11.07.2025

Tiny logo
Teaser image to MCML at ICML 2025

25 Accepted Papers (20 Main, and 5 Workshops)

42nd International Conference on Machine Learning, Vancouver, Canada, Jul 13-19, 2025

We are happy to announce that MCML researchers have contributed a total of 25 papers to ICML 2025: 20 Main, and 5 Workshop papers. Congrats to our researchers!

Main Track (20 papers)

W. Durani • T. Nitzl • C. Plant • C. Böhm
Weakly Supervised Anomaly Detection via Dual-Tailed Kernel.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

X. Feng • Z. Jiang • T. KaufmannE. Hüllermeier • P. Weng • Y. Zhu
Comparing Comparisons: Informative and Easy Human Feedback with Distinguishability Queries.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

U. Fischer AbaigarC. Kern • J. Perdomo
The Value of Prediction in Identifying the Worst-Off.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. Spotlight Presentation. Outstanding Paper Award. URL

P. Fatemi • E. Sharifian • M. H. Yassaee
A New Approach to Backtracking Counterfactual Explanations: A Unified Causal Framework for Efficient Model Interpretability.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

F. Kreuter
Adaptive Alignment: Designing AI for a Changing World - Frauke Kreuter.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. Invited Talk. URL

S. Karnik • A. Veselovska • M. Iwen • F. Krahmer
Implicit Regularization for Tubal Tensor Factorizations via Gradient Descent.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

W. LaiA. Fraser • I. Titov
Joint Localization and Activation Editing for Low-Resource Fine-Tuning.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

M. Lienen • A. Saydemir • S. Günnemann
UnHiPPO: Uncertainty-aware Initialization for State Space Models.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

A. Modarressi • H. Deilamsalehy • F. Dernoncourt • T. Bui • R. A. Rossi • S. Yoon • H. Schütze
NoLiMa: Long-Context Evaluation Beyond Literal Matching.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL URL

S. Müller • A. Reuter • N. Hollmann • D. Rügamer • F. Hutter
Position: The Future of Bayesian Prediction Is Prior-Fitted.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

D. A. Nguyen • E. Araya • A. FonoG. Kutyniok
Time to Spike? Understanding the Representational Power of Spiking Neural Networks in Discrete Time.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

T. PielokB. BischlD. Rügamer
Revisiting Unbiased Implicit Variational Inference.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

A. Reuter • T. G. J. Rudner • V. FortuinD. Rügamer
Can Transformers Learn Full Bayesian Inference in Context?
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

J. SchweisthalD. FrauenM. SchröderK. HeßN. KilbertusS. Feuerriegel
Learning Representations of Instruments for Partial Identification of Treatment Effects.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

R. SchulteD. RügamerT. Nagler
Adjustment for Confounding using Pre-Trained Representations.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

A. Soleymani • B. Tahmasebi • S. Jegelka • P. Jaillet
Learning with Exact Invariances in Polynomial Time.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

D. Tramontano • Y. Kivva • S. Salehkaleybar • N. Kiyavash • M. Drton
Causal Effect Identification in lvLiNGAM from Higher-Order Cumulants.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

L. Thede • K. Roth • M. Bethge • Z. Akata • T. Hartvigsen
WikiBigEdit: Understanding the Limits of Lifelong Knowledge Editing in LLMs.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

A. Uselis • A. Dittadi • S. J. Oh
Does Data Scaling Lead to Visual Compositional Generalization?
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL GitHub

J. Zausinger • L. Pennig • A. Kozina • S. Sdahl • J. Sikora • A. Dendorfer • T. Kuznetsov • M. Hagog • N. Wiedemann • K. Chlodny • V. Limbach • A. Ketteler • T. Prein • V. M. Singh • M. M. Danziger • J. Born
Regress, Don't Guess -- A Regression-like Loss on Number Tokens for Language Models.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL GitHub

Workshops (5 papers)

J. von BergA. FonoM. DatresS. MaskeyG. Kutyniok
The Price of Robustness: Stable Classifiers Need Overparameterization.
HiLD @ICML 2025 - Workshop on High-dimensional Learning Dynamics at the 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

F. Kiwitt • B. Tahmasebi • S. Jegelka
Symmetries in Weight Space Learning: To Retain or Remove?
HiLD @ICML 2025 - Workshop on High-dimensional Learning Dynamics at the 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

Z. Li • X. Han • Y. Li • N. StraußM. Schubert
DAWM: Diffusion Action World Models for Offline Reinforcement Learning via Action-Inferred Transitions.
WM @ICML 2025 - Workshop on Building Physically Plausible World Models at the 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. arXiv

P. Spohn • L. GirrbachJ. BaderZ. Akata
Align-then-Unlearn: Embedding Alignment for LLM Unlearning.
MUGen @ICML 2025 - Workshop on Machine Unlearning for Generative AI at the 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

L. Xu • M. Sarkar • A. I. Lonappan • Í. Zubeldia • P. Villanueva-Domingo • S. Casas • C. Fidler • C. Amancharla • U. Tiwari • A. Bayer • C. A. Ekioui • M. Cranmer • A. Dimitrov • J. Fergusson • K. Gandhi • S. Krippendorf • A. Laverick • J. Lesgourgues • A. Lewis • T. Meier • B. Sherwin • K. Surrao • F. Villaescusa-Navarro • C. Wang • X. Xu • B. Bolliet
Open Source Planning & Control System with Language Agents for Autonomous Scientific Discovery.
ML4Astro @ICML 2025 - Machine Learning for Astrophysics at the 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. PDF

#research #top-tier-work #akata #bauer-s #bischl #drton #feuerriegel #fornasier #fortuin #fraser #guennemann #huellermeier #jegelka #kern #kilbertus #krahmer #kreuter #kutyniok #nagler #ruegamer #schubert #schuetze #seidl #sra
Subscribe to RSS News feed

Related

Link to Blind Matching – Aligning Images and Text Without Training or Labels

15.01.2026

Blind Matching – Aligning Images and Text Without Training or Labels

CVPR 2025 research from Daniel Cremers’ group shows how images and text can be aligned without training data, labels, or paired examples.

Link to High-Res Images, Less Wait: A Simple Flow for Image Generation

08.01.2026

High-Res Images, Less Wait: A Simple Flow for Image Generation

ECCV 2024 research led by Björn Ommer’s team enables faster high-resolution image generation by boosting diffusion models with flow matching.

Link to

02.01.2026

MCML Researchers in Highly-Ranked Journals

We are excited to announce that MCML researchers have four papers published in highly-ranked journals in 2026.

Link to Digdeep Podcast: Armin Nassehi, how does social transformation succeed?

25.12.2025

Digdeep Podcast: Armin Nassehi, How Does Social Transformation Succeed?

In the new episode of #digdeep, sociologist Armin Nassehi explains, how social transformation succeeds.

Link to "See, Don’t Assume": Revealing and Reducing Gender Bias in AI

18.12.2025

"See, Don’t Assume": Revealing and Reducing Gender Bias in AI

ICLR 2025 research led by Zeynep Akata’s team reveals and reduces gender bias in popular vision-language AI models.

Back to Top