19.07.2024
MCML at ICML 2024
24 Accepted Papers (17 Main, and 7 Workshops)
41st International Conference on Machine Learning, Vienna, Austria, Jul 21-27, 2024
We are happy to announce that MCML researchers have contributed a total of 24 papers to ICML 2024: 17 Main, and 7 Workshop papers. Congrats to our researchers!
Main Track (17 papers)
Improving Neural Additive Models with Bayesian Principles.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL GitHub
Provably Better Explanations with Optimized Aggregation of Feature Attributions.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Position: Insights from Survey Methodology can Improve Training Data.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Fair Off-Policy Learning from Observational Data.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Position: Why We Must Rethink Empirical Research in Machine Learning.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Position: Embracing Negative Results in Machine Learning.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Position: A Call to Action for a Human-Centered AutoML Paradigm.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Generalizing orthogonalization for models with non-linearities.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Second-Order Uncertainty Quantification: A Distance-Based Approach.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Variational Learning is Effective for Large Deep Networks.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL GitHub
Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Connecting the Dots: Is Mode Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Causal Effect Identification in LiNGAM Models with Latent Confounders.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Workshops (7 papers)
SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research.
AI4Science @ICML 2024 - AI for Science Workshop at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Relaxing Graph Transformers for Adversarial Attacks.
Differentiable Almost Everything @ICML 2024 - Workshop Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. PDF
Comparing Comparisons: Informative and Easy Human Feedback with Distinguishability Queries.
MHFAIA @ICML 2024 - Workshop on Models of Human Feedback for AI Alignment at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
The Missing Link: Allocation Performance in Causal Machine Learning.
Workshop Humans, Algorithmic Decision-Making and Society @ICML 2024 - Workshop Humans, Algorithmic Decision-Making and Society: Modeling Interactions and Impact at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. arXiv URL
Quantifying Aleatoric and Epistemic Uncertainty: A Credal Approach.
SPIGM @ICML 2024 - Workshop on Structured Probabilistic Inference & Generative Modeling at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
SA-DQAS: Self-attention Enhanced Differentiable Quantum Architecture Search.
Differentiable Almost Everything @ICML 2024 - Workshop Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. PDF
Disentangled Representation Learning through Geometry Preservation with the Gromov-Monge Gap.
SPIGM @ICML 2024 - Workshop on Structured Probabilistic Inference & Generative Modeling at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. arXiv
#research #top-tier-work #akata #bischl #boulesteix #cremers #drton #feuerriegel #feurer #fortuin #guennemann #huellermeier #kaissis #kern #kreuter #nagler #plank #rueckert #ruegamer #seidl #theis #tresp
Related
20.11.2025
Zigzag Your Way to Faster, Smarter AI Image Generation
ZigMa, introduced by Björn Ommer’s group at ECCV 24, improves high-res AI image and video generation with fast, memory-efficient zigzag scanning.
13.11.2025
Anne-Laure Boulesteix Among the World’s Most Cited Researchers
MCML PI Anne‑Laure Boulesteix named Highly Cited Researcher 2025 for cross-field work, among 17 LMU scholars recognized globally.
13.11.2025
Björn Ommer Featured in Frankfurter Rundschau
Björn Ommer highlights how Google’s new AI search mode impacts publishers, content visibility, and the diversity of online information.
13.11.2025
Fabian Theis Among the World’s Most Cited Researchers
Fabian Theis is named a Highly Cited Researcher 2025 for his work in mathematical modeling of biological systems.