Home  | News

19.07.2024

Tiny logo
Teaser image to MCML at ICML 2024

MCML at ICML 2024

24 Accepted Papers (17 Main, and 7 Workshops)

41st International Conference on Machine Learning, Vienna, Austria, Jul 21-27, 2024

We are happy to announce that MCML researchers have contributed a total of 24 papers to ICML 2024: 17 Main, and 7 Workshop papers. Congrats to our researchers!

Main Track (17 papers)

K. Bouchiat • A. Immer • H. Yèche • G. Ratsch • V. Fortuin
Improving Neural Additive Models with Bayesian Principles.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

M. Bini • K. Roth • Z. Akata • A. Khoreva
ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL GitHub

T. Decker • A. R. Bhattarai • J. Gu • V. Tresp • F. Buettner
Provably Better Explanations with Optimized Aggregation of Feature Attributions.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

S. Eckman • B. PlankF. Kreuter
Position: Insights from Survey Methodology can Improve Training Data.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

D. FrauenV. MelnychukS. Feuerriegel
Fair Off-Policy Learning from Observational Data.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

F. Fumagalli • M. MuschalikP. KolpaczkiE. Hüllermeier • B. Hammer
KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

M. Herrmann • F. J. D. Lange • K. Eggensperger • G. CasalicchioM. WeverM. FeurerD. RügamerE. HüllermeierA.-L. BoulesteixB. Bischl
Position: Why We Must Rethink Empirical Research in Machine Learning.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

G. Kaissis • S. Kolek • B. Balle • J. Hayes • D. Rückert
Beyond the Calibration Point: Mechanism Comparison in Differential Privacy.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

F. Karl • M. Kemeter • G. Dax • P. Sierak
Position: Embracing Negative Results in Machine Learning.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

M. Lindauer • F. Karl • A. Klier • J. Moosbauer • A. Tornede • A. C. Mueller • F. Hutter • M. FeurerB. Bischl
Position: A Call to Action for a Human-Centered AutoML Paradigm.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

T. Papamarkou • M. Skoularidou • K. Palla • L. Aitchison • J. Arbel • D. Dunson • M. Filippone • V. Fortuin • P. Hennig • J. M. Hernández-Lobato • A. Hubin • A. Immer • T. Karaletsos • M. E. Khan • A. Kristiadi • Y. Li • S. Mandt • C. Nemeth • M. A. Osborne • T. G. J. Rudner • D. Rügamer • Y. W. Teh • M. Welling • A. G. Wilson • R. Zhang
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

D. RügamerC. KolbT. Weber • L. Kook • T. Nagler
Generalizing orthogonalization for models with non-linearities.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

Y. SaleV. Bengs • M. Caprio • E. Hüllermeier
Second-Order Uncertainty Quantification: A Distance-Based Approach.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

Y. Shen • N. Daheim • B. Cong • P. Nickl • G. M. Marconi • C. Bazan • R. Yokota • I. Gurevych • D. Cremers • M. E. Khan • T. Möllenhoff
Variational Learning is Effective for Large Deep Networks.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL GitHub

J. SchweisthalD. Frauen • M. Van der Schaar • S. Feuerriegel
Meta-Learners for Partially-Identified Treatment Effects Across Multiple Environments.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

E. SommerL. Wimmer • T. Papamarkou • L. BothmannB. BischlD. Rügamer
Connecting the Dots: Is Mode Connectedness the Key to Feasible Sample-Based Inference in Bayesian Neural Networks?
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

D. Tramontano • Y. Kivva • S. Salehkaleybar • M. Drton • N. Kiyavash
Causal Effect Identification in LiNGAM Models with Latent Confounders.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

Workshops (7 papers)

M. Dani • M. J. Prakash • Z. Akata • S. Liebe
SemioLLM: Assessing Large Language Models for Semiological Analysis in Epilepsy Research.
AI4Science @ICML 2024 - AI for Science Workshop at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

P. Foth • L. Gosch • S. Geisler • L. Schwinn • S. Günnemann
Relaxing Graph Transformers for Adversarial Attacks.
Differentiable Almost Everything @ICML 2024 - Workshop Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. PDF

X. Feng • Z. Jiang • T. KaufmannE. Hüllermeier • P. Weng • Y. Zhu
Comparing Comparisons: Informative and Easy Human Feedback with Distinguishability Queries.
MHFAIA @ICML 2024 - Workshop on Models of Human Feedback for AI Alignment at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

U. Fischer AbaigarC. KernF. Kreuter
The Missing Link: Allocation Performance in Causal Machine Learning.
Workshop Humans, Algorithmic Decision-Making and Society @ICML 2024 - Workshop Humans, Algorithmic Decision-Making and Society: Modeling Interactions and Impact at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. arXiv URL

P. HofmanY. SaleE. Hüllermeier
Quantifying Aleatoric and Epistemic Uncertainty: A Credal Approach.
SPIGM @ICML 2024 - Workshop on Structured Probabilistic Inference & Generative Modeling at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

Y. Sun • J. Liu • Z. Wu • Z. DingY. MaT. SeidlV. Tresp
SA-DQAS: Self-attention Enhanced Differentiable Quantum Architecture Search.
Differentiable Almost Everything @ICML 2024 - Workshop Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Operators, and Simulators at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. PDF

T. Uscidda • L. EyringK. RothF. J. TheisZ. Akata • M. Cuturi
Disentangled Representation Learning through Geometry Preservation with the Gromov-Monge Gap.
SPIGM @ICML 2024 - Workshop on Structured Probabilistic Inference & Generative Modeling at the 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. arXiv

#research #top-tier-work #akata #bischl #boulesteix #cremers #drton #feuerriegel #feurer #fortuin #guennemann #huellermeier #kaissis #kern #kreuter #nagler #plank #rueckert #ruegamer #seidl #theis #tresp
Subscribe to RSS News feed

Related

Link to Needle in a Haystack: Finding Exact Moments in Long Videos

05.02.2026

Needle in a Haystack: Finding Exact Moments in Long Videos

ECCV 2024 research introduces RGNet, an AI model that finds exact moments in long videos using unified retrieval and grounding.

Read more
Link to Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

04.02.2026

Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

Benjamin Busam leads the scientific design of the “CuBy” satellite network, delivering AI-ready Earth observation data for Bavaria.

Read more
Link to Cracks in the foundations of cosmology

30.01.2026

Cracks in the Foundations of Cosmology

Daniel Grün examines cosmological tensions that challenge the Standard Model and may point toward new physics.

Read more
Link to How Machines Can Discover Hidden Rules Without Supervision

29.01.2026

How Machines Can Discover Hidden Rules Without Supervision

ICLR 2025 research shows how self-supervised learning uncovers hidden system dynamics from unlabeled, high-dimensional data.

Read more
Link to Matthias Nießner Co-Founds AI Startup Synthesia

28.01.2026

Matthias Nießner Co-Founds AI Startup Synthesia

Julien Gagneur comments on DeepMind’s AlphaGenome, highlighting its precision and remaining challenges in genome prediction.

Read more
Back to Top