29.07.2020

Teaser image to MCML - Virtual workshop

MCML - Virtual workshop

Over 20 presentations by our PhD students on current research topics

The workshop includes presentations on Spatial and Temporal Machine Learning & Computer Vision, Learning on Graphs and Networks & Representation Learning, and Automatic and Explainable Modeling & Computational Models for Large-Sclae ML.

Agenda

14:00–
14:20
       Prof. Dr. Thomas Seidl, Prof. Dr. Daniel Cremers
Welcome Greeting


Track 1: Spatial and Temporal Machine Learning & Computer Vision

14:20–
14:40
       Ashkan Khakzar, Azade Farshad / Prof. Dr. Nassir Navab
Machine Learning at CAMP: Interpretability and Spatio-temporal Learning for Medical Imaging

14:40–
15:00
Christopher Küster / Prof. Dr. Volker Schmid
Bayesian image segmentation with hierarchical Potts models

15:00–
15:20
Prof. Dr. Matthias Schubert
Resource Search in Data Driven Environments

15:20–
15:40
Guillem Brasó / Prof. Dr. Laura Leal-Taixé
Learning a neural solver for multi-object tracking

15:40–
16:00
Yuesong Shen / Prof. Dr. Daniel Cremers
Deep learning: a non-alchemical view

16:00–
16:20
Vladimir Golkov, / Prof. Dr. Daniel Cremers
Equivariant Deep Learning

16:20–
16:40
Andrei Burov / Prof. Dr. Matthias Niessner
Learning to Optimize for Human Reconstructions


Track 2: Learning on Graphs and Networks & Representation Learning

14:20–
14:40
       Daniel Zügner / Prof. Dr. Stephan Günnemann
Robust deep learning on graphs

14:40–
15:00
Cornelius Fritz, Marc Schneble, Sevag Kevork / Prof. Dr. Göran Kauermann
Applied Network Science

15:00–
15:20
Max Berrendorf / Prof. Dr. Volker Tresp
Knowledge Graph Matching

15:20–
15:40
Alex Markham / Prof. Dr. Moritz Grosse-Wentrup
Measurement Dependence Inducing Latent Causal Models

15:40–
16:00
Nora Kassner / Prof. Dr. Hinrich Schütze
Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly

16:00–
16:20
Mohammad Lotfollahi / Prof. Dr. Dr. Fabian Theis
Query to reference single-cell integration with transfer learning

16:20–
16:40
Marius Lange / Prof. Dr. Dr. Fabian Theis
Mapping the fate of single cells with RNA velocity using CellRank


Track 3: Automatic and Explainable Modeling & Computational Models for Large-Sclae ML

14:20–
14:40
       Dr. David Ruegamer / Prof. Dr. Bernd Bischl
Semi-Structured Deep Distributional Regression

14:40–
15:00
Julia Moosbauer, Martin Binder / Prof. Dr. Bernd Bischl
Multi-Objective Hyperparameter Tuning and Feature Selection using Filter Ensembles

15:00–
15:20
Theresa Ullmann, Christina Nießl / Prof. Dr. Anne-Laure Boulesteix
Cluster Analysis and Feature Rankings: Validation, benchmarking and over-optimism concerns

15:20–
15:40
Moritz Herrmann / PD Dr. Fabian Scheipl
Finding and evaluating embeddings for functional data

15:40–
16:00
Li Qian / Prof. Dr. Christian Böhm
Clustering Large-Scaled Datasets using Deep Learning

16:00–
16:20
Anna Beer / Prof. Dr. Peer Kröger
Evaluation of Results from Unsupervised Learning Processes

16:20–
16:40
Daniyal Kazempour / Prof. Dr. Thomas Seidl
Recent Advances in Correlation Clustering

16:40–
17:00
Sandra Obermeier / Prof. Dr. Thomas Seidl
Active Learning - Diversity vs. Uncertainty Sampling


17:00–
17:30
       Prof. Dr. Bernd Bischl
Closing Remarks

29.07.2020


Related

Link to DSSGx Munich 2024 Kick-off Event

01.08.2024

DSSGx Munich 2024 Kick-off Event

The opening event of DSSGx Munich 2024 (Data Science for Social Good) took place in early August.


Link to MCML Munich AI Day

16.07.2024

MCML Munich AI Day

At the beginning of July, the MCML presented the first Munich AI Day. In this short article, we would like to look back together on the successful event.


Link to MCML at the 18th International For..Net Symposium 2024

25.05.2024

MCML at the 18th International For..Net Symposium 2024

The MCML presented AMELIE - our demonstrator offering a glimpse into the inner learning processes of machines - at the 18th International For..Net Symposium 2024


Link to MCML launches new collaborative format for scientific exchange

27.03.2024

MCML launches new collaborative format for scientific exchange

With the Pitch Talk Series, the MCML proudly presents their new collaborative format for scientific exchange and community building.


Link to ELLIS Workshop: Semantic, Symbolic and Interpretable Machine Learning

25.02.2024

ELLIS Workshop: Semantic, Symbolic and Interpretable Machine Learning

MCML PI Volker Tresp organized an ELLIS Workshop together with Kristian Kersting (TU Darmstadt) & Paolo Frasconi (Università di Firenze).