holds the Bavarian AI Chair for Mathematical Foundations of Artificial Intelligence at LMU Munich.
The chair's research focus on the intersection of mathematics and artificial intelligence, aiming for both a mathematical understanding of artificial intelligence and artificial intelligence for mathematical problems.
We introduce r-loopy Weisfeiler-Leman (r-ℓWL), a novel hierarchy of graph isomorphism tests and a corresponding GNN framework, r-ℓMPNN, that can count cycles up to length r+2. Most notably, we show that r-ℓWL can count homomorphisms of cactus graphs. This strictly extends classical 1-WL, which can only count homomorphisms of trees and, in fact, is incomparable to k-WL for any fixed k. We empirically validate the expressive and counting power of the proposed r-ℓMPNN on several synthetic datasets and present state-of-the-art predictive performance on various real-world datasets.
Deep learning still has drawbacks in terms of trustworthiness, which describes a comprehensible, fair, safe, and reliable method. To mitigate the potential risk of AI, clear obligations associated to trustworthiness have been proposed via regulatory guidelines, e.g., in the European AI Act. Therefore, a central question is to what extent trustworthy deep learning can be realized. Establishing the described properties constituting trustworthiness requires that the factors influencing an algorithmic computation can be retraced, i.e., the algorithmic implementation is transparent. Motivated by the observation that the current evolution of deep learning models necessitates a change in computing technology, we derive a mathematical framework which enables us to analyze whether a transparent implementation in a computing model is feasible. We exemplarily apply our trustworthiness framework to analyze deep learning approaches for inverse problems in digital and analog computing models represented by Turing and Blum-Shub-Smale Machines, respectively. Based on previous results, we find that Blum-Shub-Smale Machines have the potential to establish trustworthy solvers for inverse problems under fairly general conditions, whereas Turing machines cannot guarantee trustworthiness to the same degree.
A powerful framework for studying graphs is to consider them as geometric graphs: nodes are randomly sampled from an underlying metric space, and any pair of nodes is connected if their distance is less than a specified neighborhood radius. Currently, the literature mostly focuses on uniform sampling and constant neighborhood radius. However, real-world graphs are likely to be better represented by a model in which the sampling density and the neighborhood radius can both vary over the latent space. For instance, in a social network communities can be modeled as densely sampled areas, and hubs as nodes with larger neighborhood radius. In this work, we first perform a rigorous mathematical analysis of this (more general) class of models, including derivations of the resulting graph shift operators. The key insight is that graph shift operators should be corrected in order to avoid potential distortions introduced by the non-uniform sampling. Then, we develop methods to estimate the unknown sampling density in a self-supervised fashion. Finally, we present exemplary applications in which the learnt density is used to 1) correct the graph shift operator and improve performance on a variety of tasks, 2) improve pooling, and 3) extract knowledge from networks. Our experimental findings support our theory and provide strong evidence for our model.