Home  | Research | Groups | Gitta Kutyniok

Research Group Gitta Kutyniok


Link to website at LMU PI Matchmaking

Gitta Kutyniok

Prof. Dr.

Principal Investigator

Gitta Kutyniok

holds the Bavarian AI Chair for Mathematical Foundations of Artificial Intelligence at LMU Munich.

The chair’s research focus on the intersection of mathematics and artificial intelligence, aiming for both a mathematical understanding of artificial intelligence and artificial intelligence for mathematical problems.

Team members @MCML

PostDocs

Link to website

Juan Esteban Suarez

Dr.

PhD Students

Link to website

Christopher Bülte

Link to website

Vit Fojtik

Link to website

Adalbert Fono

Link to website

Carlo Kneissl

Link to website

Sohir Maskey

Link to website

Maria Matveev

Link to website

Raffaele Paolino

Link to website

Philipp Scholl

Link to website

Manjot Singh

Link to website

Jonas von Berg

Recent News @MCML

Link to MCML at ICCV 2025

MCML at ICCV 2025

Link to Gitta Kutyniok Appears on ARD Audiothek

01.09.2025

Gitta Kutyniok Appears on ARD Audiothek

Link to MCML at ICML 2025

MCML at ICML 2025

Link to MCML at ICLR 2025

MCML at ICLR 2025

Link to Gitta Kutyniok Joins National Academy of Artificial Intelligence

10.04.2025

Gitta Kutyniok Joins National Academy of Artificial Intelligence

Publications @MCML

2025


[48] A* Conference
S. Kolek • A. Chattopadhyay • K. H. R. Chan • H. Andrade-Loarca • G. Kutyniok • R. Vidal
Learning Interpretable Queries for Explainable Image Classification with Information Pursuit.
ICCV 2025 - IEEE/CVF International Conference on Computer Vision. Honolulu, Hawai’i, Oct 19-23, 2025. To be published. Preprint available. URL

[47]
C. KneisslC. BülteP. SchollG. Kutyniok
Improved probabilistic regression using diffusion models.
Preprint (Oct. 2025). arXiv

[46]
J. von BergA. Fono • M. Datres • S. MaskeyG. Kutyniok
The Price of Robustness: Stable Classifiers Need Overparameterization.
HiLD @ICML 2025 - Workshop on High-dimensional Learning Dynamics at the 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

[45] A* Conference
D. A. Nguyen • E. Araya • A. FonoG. Kutyniok
Time to Spike? Understanding the Representational Power of Spiking Neural Networks in Discrete Time.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

[44]
J. Li • G. Kutyniok
Expressivity of deep neural networks.
Preprint (Jul. 2025). PDF

[43] Top Journal
H. Boche • A. FonoG. Kutyniok
Mathematical Algorithm Design for Deep Learning under Societal and Judicial Constraints: The Algorithmic Transparency Requirement.
Applied and Computational Harmonic Analysis 77.101763. Jun. 2025. DOI

[42]
S. MaskeyG. Kutyniok • R. Levie
Generalization Bounds for Message Passing Networks on Mixture of Graphons.
SIAM Journal on Mathematics of Data Science 7.2. Jun. 2025. DOI

[41]
H. Boche • V. FojtikA. FonoG. Kutyniok
Computability of Classification and Deep Learning: From Theoretical Limits to Practical Feasibility through Quantization.
Journal of Fourier Analysis and Applications 31.35. May. 2025. DOI

[40]
V. FojtikM. Matveev • H.-H. Chou • G. KutyniokJ. Maly
Conflicting Biases at the Edge of Stability: Norm versus Sharpness Regularization.
Preprint (May. 2025). arXiv

[39]
S. MaskeyR. Paolino • F. Jogl • G. Kutyniok • J. Lutzeyer
Graph Representational Learning: When Does More Expressivity Hurt Generalization?
Preprint (May. 2025). arXiv

[38]
P. Scholl • A. Dietrich • S. Wolf • J. Lee • A.-A. Schäffer • G. Kutyniok • M. Iskandar
Interpretable Robotic Friction Learning via Symbolic Regression.
Preprint (May. 2025). arXiv

[37]
C. BülteS. MaskeyP. SchollJ. von BergG. Kutyniok
Graph Neural Networks for Enhancing Ensemble Forecasts of Extreme Rainfall.
Climate Change AI @ICLR 2025 - Workshop on Tackling Climate Change with Machine Learning at the 13th International Conference on Learning Representations. Singapore, Apr 24-28, 2025. URL

[36] A* Conference
P. Scholl • K. Bieker • H. Hauger • G. Kutyniok
ParFam -- (Neural Guided) Symbolic Regression Based on Continuous Global Optimization.
ICLR 2025 - 13th International Conference on Learning Representations. Singapore, Apr 24-28, 2025. URL GitHub

[35]
H. Hauger • P. SchollG. Kutyniok
Robust identifiability for symbolic recovery of differential equations.
ICASSP 2025 - IEEE International Conference on Acoustics, Speech and Signal Processing. Hyderabad, India, Apr 06-11, 2025. DOI

[34]
G. Kutyniok
How Can Reliability of Artificial Intelligence Be Ensured?
Harvard Data Science Review 7.2. Apr. 2025. DOI

[33]
C. BülteY. Sale • T. Löhr • P. HofmanG. KutyniokE. Hüllermeier
An Axiomatic Assessment of Entropy- and Variance-based Uncertainty Quantification in Regression.
Preprint (Apr. 2025). arXiv

[32]
C. BülteP. SchollG. Kutyniok
Probabilistic neural operators for functional uncertainty quantification.
Transactions on Machine Learning Research. Mar. 2025. URL

[31]
A. FonoM. Singh • E. Araya • P. C. Petersen • H. Boche • G. Kutyniok
Sustainable AI: Mathematical Foundations of Spiking Neural Networks.
Preprint (Mar. 2025). arXiv

2024


[30]
K. Bieker • H. T. Kussaba • P. Scholl • J. Jung • A. Swikir • S. Haddadin • G. Kutyniok
Compositional Construction of Barrier Functions for Switched Impulsive Systems.
CDC 2024 - 63rd IEEE Conference on Decision and Control. Milan, Italy, Dec 16-19, 2024. DOI

[29]
C. BülteP. SchollG. Kutyniok
Probabilistic predictions with Fourier neural operators.
BDU @NeurIPS 2024 - Workshop Bayesian Decision-making and Uncertainty: from probabilistic and spatiotemporal modeling to sequential experiment design at the 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

[28] A* Conference
R. PaolinoS. Maskey • P. Welke • G. Kutyniok
Weisfeiler and Leman Go Loopy: A New Hierarchy for Graph Representational Learning.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

[27] Top Journal
Y. N. Böck • H. Boche • F. H. P. Fitzek • G. Kutyniok
Computing-Model and Computing-Hardware Selection for ICT Under Societal and Judicial Constraints.
IEEE Access 12. Dec. 2024. DOI

[26]
P. Scholl • M. Iskandar • S. Wolf • J. Lee • A. Bacho • A. Dietrich • A. Albu-Schäffer • G. Kutyniok
Learning-based adaption of robotic friction models.
Robotics and Computer-Integrated Manufacturing 89. Oct. 2024. DOI

[25]
P. Scholl • A. Bacho • H. Boche • G. Kutyniok
Symbolic Recovery of Differential Equations: The Identifiability Problem.
Preprint (Oct. 2024). arXiv

[24]
Ç. Yapar • R. Levie • G. Kutyniok • G. Caire
Dataset of Pathloss and ToA Radio Maps With Localization Application.
Preprint (Sep. 2024). arXiv

[23]
H. Boche • A. FonoG. Kutyniok
A Mathematical Framework for Computability Aspects of Algorithmic Transparency.
ISIT 2024 - IEEE International Symposium on Information Theory. Athens, Greece, Jul 07-12, 2024. DOI

[22]
Ç. Yapar • F. Jaensch • R. Levie • G. Kutyniok • G. Caire
Overview of the First Pathloss Radio Map Prediction Challenge.
IEEE Open Journal of Signal Processing 5. Jun. 2024. DOI

[21] Top Journal
Y. Lee • H. Boche • G. Kutyniok
Computability of Optimizers.
IEEE Transactions on Information Theory 70.4. Apr. 2024. DOI

[20]
B. Lorenz • A. Bacho • G. Kutyniok
Error Estimation for Physics-informed Neural Networks Approximating Semilinear Wave Equations.
Preprint (Mar. 2024). arXiv

[19]
M. SinghA. FonoG. Kutyniok
Expressivity of Spiking Neural Networks.
Preprint (Mar. 2024). arXiv

2023


[18] A* Conference
S. MaskeyR. Paolino • A. Bacho • G. Kutyniok
A Fractional Graph Laplacian Approach to Oversmoothing.
NeurIPS 2023 - 37th Conference on Neural Information Processing Systems. New Orleans, LA, USA, Dec 10-16, 2023. URL GitHub

[17] A* Conference
M. Seleznova • D. Weitzner • R. Giryes • G. Kutyniok • H.-H. Chou
Neural (Tangent Kernel) Collapse.
NeurIPS 2023 - 37th Conference on Neural Information Processing Systems. New Orleans, LA, USA, Dec 10-16, 2023. URL

[16]
M. SinghA. FonoG. Kutyniok
Are Spiking Neural Networks more expressive than Artificial Neural Networks?
UniReps @NeurIPS 2023 - 1st Workshop on Unifying Representations in Neural Models at the 37th Conference on Neural Information Processing Systems. New Orleans, LA, USA, Dec 10-16, 2023. URL

[15] Top Journal
H. Boche • A. FonoG. Kutyniok
Limitations of Deep Learning for Inverse Problems on Digital Hardware.
IEEE Transactions on Information Theory 69.12. Dec. 2023. DOI

[14] Top Journal
Ç. Yapar • R. Levie • G. Kutyniok • G. Caire
Real-Time Outdoor Localization Using Radio Maps: A Deep Learning Approach.
IEEE Transactions on Wireless Communications 22.12. Dec. 2023. DOI

[13]
H. Andrade-Loarca • J. Hege • D. CremersG. Kutyniok
Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape Reconstruction from Point Clouds.
Preprint (Nov. 2023). arXiv

[12]
Ç. Yapar • F. Jaensch • R. Ron • G. Kutyniok • G. Caire
Overview of the Urban Wireless Localization Competition.
MLSP 2023 - IEEE Workshop on Machine Learning for Signal Processing. Rome, Italy, Sep 17-20, 2023. DOI

[11]
A. Bacho • H. Boche • G. Kutyniok
Complexity Blowup for Solutions of the Laplace and the Diffusion Equation.
Preprint (Sep. 2023). arXiv

[10] A* Conference
S. Alberti • N. Dern • L. Thesing • G. Kutyniok
Sumformer: Universal Approximation for Efficient Transformers.
ICML 2023 - 2nd Annual Workshop on Topology, Algebra, and Geometry in Machine Learning at the 40th International Conference on Machine Learning. Honolulu, Hawaii, Jul 23-29, 2023. URL

[9]
G. Kutyniok
An introduction to the mathematics of deep learning.
European Congress of Mathematics. Jul. 2023. DOI

[8]
A. Bacho • H. Boche • G. Kutyniok
Reliable AI: Does the Next Generation Require Quantum Computing?
Preprint (Jul. 2023). arXiv

[7]
P. Scholl • A. Bacho • H. Boche • G. Kutyniok
The Uniqueness Problem of Physical Law Learning.
ICASSP 2023 - IEEE International Conference on Acoustics, Speech and Signal Processing. Rhode Island, Greece, Jun 04-10, 2023. DOI

[6]
Ç. Yapar • F. Jaensch • R. Levie • G. Kutyniok • G. Caire
The First Pathloss Radio Map Prediction Challenge.
ICASSP 2023 - IEEE International Conference on Acoustics, Speech and Signal Processing. Rhode Island, Greece, Jun 04-10, 2023. DOI

[5] A* Conference
R. Paolino • A. Bojchevski • S. GünnemannG. Kutyniok • R. Levie
Unveiling the Sampling Density in Non-Uniform Geometric Graphs.
ICLR 2023 - 11th International Conference on Learning Representations. Kigali, Rwanda, May 01-05, 2023. URL

2022


[4]
H. Boche • A. FonoG. Kutyniok
Non-Computability of the Pseudoinverse on Digital Computers.
Preprint (Dec. 2022). arXiv

[3] A* Conference
C. KokeG. Kutyniok
Graph Scattering beyond Wavelet Shackles.
NeurIPS 2022 - 36th Conference on Neural Information Processing Systems. New Orleans, LA, USA, Nov 28-Dec 09, 2022. URL

[2] A* Conference
S. Maskey • R. Levie • Y. Lee • G. Kutyniok
Generalization Analysis of Message Passing Neural Networks on Large Random Graphs.
NeurIPS 2022 - 36th Conference on Neural Information Processing Systems. New Orleans, LA, USA, Nov 28-Dec 09, 2022. URL

[1] A* Conference
Y. Zhou • G. Kutyniok • B. Ribeiro
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs.
NeurIPS 2022 - 36th Conference on Neural Information Processing Systems. New Orleans, LA, USA, Nov 28-Dec 09, 2022. URL