Home  | News

26.08.2023

Tiny logo
Teaser image to ERC Starting Grant for Angela Dai

ERC Starting Grant for Angela Dai

Spatial 3D Semantic Understanding for Perception in the Wild

For her project entitled "Spatial 3D Semantic Understanding for Perception in the Wild" our PI Angela Dai has been awarded an ERC Starting Grant 2022 by the European Research Council (ERC).

Angela Dai's research focuses on attaining a 3D understanding of the world around us, capturing and constructing semantically-informed 3D models of real-world environments. This includes 3D reconstruction and semantic understanding from commodity RGB-D sensor data, leveraging generative 3D deep learning towards enabling understanding and interaction with 3D scenes for content creation and virtual or robotic agents.

Congrats from us!

#award #research #dai
Subscribe to RSS News feed

Related

Link to

19.01.2026

MCML at AAAI 2026

MCML researchers are represented with 9 papers at AAAI 2026 (6 Main, and 3 Workshops).

Link to MCML PI Frauke Kreuter Featured on ARD alpha on AI

19.01.2026

MCML PI Frauke Kreuter Featured on ARD Alpha on AI

MCML PI Frauke Kreuter featured on ARD alpha discussing AI in daily life, workplace applications, and responsible, future-ready use.

Link to Blind Matching – Aligning Images and Text Without Training or Labels

15.01.2026

Blind Matching – Aligning Images and Text Without Training or Labels

CVPR 2025 research from Daniel Cremers’ group shows how images and text can be aligned without training data, labels, or paired examples.

Link to MCML PIs Featured in Süddeutsche Zeitung

12.01.2026

MCML PIs Featured in Süddeutsche Zeitung

MCML PIs Xiaoxiang Zhu and Felix Dietrich featured in Süddeutsche Zeitung for TU Munich’s 2025 breakthroughs in AI and data science.

Link to High-Res Images, Less Wait: A Simple Flow for Image Generation

08.01.2026

High-Res Images, Less Wait: A Simple Flow for Image Generation

ECCV 2024 research led by Björn Ommer’s team enables faster high-resolution image generation by boosting diffusion models with flow matching.

Back to Top