18.03.2025
©TUM
New Method Significantly Reduces AI Energy Consumption
TUM News
Researchers at the Technical University of Munich have developed an innovative method that drastically lowers the energy consumption of artificial intelligence systems. The approach optimizes computational efficiency, making AI applications more sustainable and cost-effective.
Our Associate Felix Dietrich emphasized the importance of energy-efficient AI, highlighting its potential to reduce environmental impact while maintaining high-performance capabilities.
«Our method makes it possible to determine the required parameters with minimal computing power. This can make the training of neural networks much faster and, as a result, more energy efficient.»
Felix Dietrich
MCML Associate
Related
11.12.2025
From Sitting Dog to Standing: A New Way to Morph 3D Shapes
ICLR 2025 work by Lu Sang and Daniel Cremers in collaboration with U Bonn enables smooth, physics-aware 3D shape deformation from point clouds.
©BAdW / Karl Neunert
08.12.2025
Tom Sterkenburg Wins Karl-Heinz Hoffmann Prize of the Bavarian Academy of Sciences
MCML JRG Leader Tom Sterkenburg receives the Karl-Heinz Hoffmann Prize of the BAdW for his interdisciplinary research.
©Juli Eberle / TUM / ediundsepp Gestaltungsgesellschaft
04.12.2025
World’s First Complete 3D Model of All Buildings Released
Xiaoxiang Zhu’s team releases GlobalBuildingAtlas, a high-res 3D map of 2.75B buildings for advanced urban and climate analysis.
04.12.2025
When to Say "I’m Not Sure": Making Language Models More Self-Aware
ICLR 2025 research by the groups of David Rügamer, and Bernd Bischl introduces methods to make LLMs more reliable by expressing uncertainty.