Home  | News

18.03.2025

Teaser image to New Method Significantly Reduces AI Energy Consumption

New Method Significantly Reduces AI Energy Consumption

TUM News

Researchers at the Technical University of Munich have developed an innovative method that drastically lowers the energy consumption of artificial intelligence systems. The approach optimizes computational efficiency, making AI applications more sustainable and cost-effective.

Our Associate Felix Dietrich emphasized the importance of energy-efficient AI, highlighting its potential to reduce environmental impact while maintaining high-performance capabilities.

«Our method makes it possible to determine the required parameters with minimal computing power. This can make the training of neural networks much faster and, as a result, more energy efficient.»


Felix Dietrich

MCML Associate

#research #dietrich
Subscribe to RSS News feed

Related

Link to Zigzag Your Way to Faster, Smarter AI Image Generation

20.11.2025

Zigzag Your Way to Faster, Smarter AI Image Generation

ZigMa, introduced by Björn Ommer’s group at ECCV 24, improves high-res AI image and video generation with fast, memory-efficient zigzag scanning.

Link to Anne-Laure Boulesteix Among the World’s Most Cited Researchers

13.11.2025

Anne-Laure Boulesteix Among the World’s Most Cited Researchers

MCML PI Anne‑Laure Boulesteix named Highly Cited Researcher 2025 for cross-field work, among 17 LMU scholars recognized globally.

Link to Björn Ommer Featured in Frankfurter Rundschau

13.11.2025

Björn Ommer Featured in Frankfurter Rundschau

Björn Ommer highlights how Google’s new AI search mode impacts publishers, content visibility, and the diversity of online information.

Link to Fabian Theis Among the World’s Most Cited Researchers

13.11.2025

Fabian Theis Among the World’s Most Cited Researchers

Fabian Theis is named a Highly Cited Researcher 2025 for his work in mathematical modeling of biological systems.

Link to Explaining AI Decisions: Shapley Values Enable Smart Exosuits

13.11.2025

Explaining AI Decisions: Shapley Values Enable Smart Exosuits

AI meets wearable robotics: MCML and Harvard researchers make exosuits smarter and safer with explainable optimization, presented at ECML-PKDD 2025.

Back to Top