Home  | News

18.03.2025

Teaser image to New Method Significantly Reduces AI Energy Consumption

New Method Significantly Reduces AI Energy Consumption

TUM News

Researchers at the Technical University of Munich have developed an innovative method that drastically lowers the energy consumption of artificial intelligence systems. The approach optimizes computational efficiency, making AI applications more sustainable and cost-effective.

Our Associate Felix Dietrich emphasized the importance of energy-efficient AI, highlighting its potential to reduce environmental impact while maintaining high-performance capabilities.

«Our method makes it possible to determine the required parameters with minimal computing power. This can make the training of neural networks much faster and, as a result, more energy efficient.»


Felix Dietrich

MCML Associate

#research #dietrich
Subscribe to RSS News feed

Related

Link to From Global to Regional Explanations: Understanding Models More Locally

22.01.2026

From Global to Regional Explanations: Understanding Models More Locally

JMLR research shows how subgroup-specific explanations reveal hidden patterns that global model explanations often miss.

Link to MCML PI Matthias Nießner Featured in WirtschaftsWoche on Spaitial AI

20.01.2026

MCML PI Matthias Nießner Featured in WirtschaftsWoche on Spaitial AI

MCML PI Matthias Nießner featured in WirtschaftsWoche for Spaitial AI, creating realistic 3D models of rooms and interiors in seconds.

Link to MCML at AAAI 2026

19.01.2026

MCML at AAAI 2026

MCML researchers are represented with 11 papers at AAAI 2026 (8 Main, and 3 Workshops).

Link to MCML PI Frauke Kreuter Featured on ARD alpha on AI

19.01.2026

MCML PI Frauke Kreuter Featured on ARD Alpha on AI

MCML PI Frauke Kreuter featured on ARD alpha discussing AI in daily life, workplace applications, and responsible, future-ready use.

Link to Blind Matching – Aligning Images and Text Without Training or Labels

15.01.2026

Blind Matching – Aligning Images and Text Without Training or Labels

CVPR 2025 research from Daniel Cremers’ group shows how images and text can be aligned without training data, labels, or paired examples.

Back to Top