18.03.2025
©TUM
New Method Significantly Reduces AI Energy Consumption
TUM News
Researchers at the Technical University of Munich have developed an innovative method that drastically lowers the energy consumption of artificial intelligence systems. The approach optimizes computational efficiency, making AI applications more sustainable and cost-effective.
Our Associate Felix Dietrich emphasized the importance of energy-efficient AI, highlighting its potential to reduce environmental impact while maintaining high-performance capabilities.
«Our method makes it possible to determine the required parameters with minimal computing power. This can make the training of neural networks much faster and, as a result, more energy efficient.»
Felix Dietrich
MCML Associate
Related
©Joachim Wendler - stock-adobe.com
02.01.2026
MCML Researchers in Highly-Ranked Journals
We are excited to announce that MCML researchers have three papers published in highly-ranked journals in %!s(
18.12.2025
"See, Don’t Assume": Revealing and Reducing Gender Bias in AI
ICLR 2025 research led by Zeynep Akata’s team reveals and reduces gender bias in popular vision-language AI models.
16.12.2025
Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine
MCML PI Fabian Theis discusses AI-driven precision medicine and its growing impact on individualized healthcare and biomedical research.
16.12.2025
Gitta Kutyniok Featured in VDI Nachrichten on AI Ethics
Gitta Kutyniok discusses measurable criteria for ethical AI, promoting safe and responsible autonomous decision-making.