18.03.2025
©TUM
New Method Significantly Reduces AI Energy Consumption
TUM News
Researchers at the Technical University of Munich have developed an innovative method that drastically lowers the energy consumption of artificial intelligence systems. The approach optimizes computational efficiency, making AI applications more sustainable and cost-effective.
Our Associate Felix Dietrich emphasized the importance of energy-efficient AI, highlighting its potential to reduce environmental impact while maintaining high-performance capabilities.
«Our method makes it possible to determine the required parameters with minimal computing power. This can make the training of neural networks much faster and, as a result, more energy efficient.»
Felix Dietrich
MCML Associate
Related
02.11.2025
MCML at EMNLP 2025
MCML researchers are represented with 37 papers at EMNLP 2025 (17 Main, 13 Findings, and 7 Workshops).
©Terzo Algeri/Fotoatelier M/ TUM
30.10.2025
Language Shapes Gender Bias in AI Images
Alexander Fraser shows AI image generators reproduce gender stereotypes differently across languages, highlighting the need for fair multilingual AI.
20.10.2025
Björn Ommer Appointed LMU Chief AI Officer
Our PI Björn Ommer has been appointed LMU’s Chief AI Officer to strengthen AI research and collaborations.
17.10.2025
MCML at ICCV 2025
MCML researchers are represented with 28 papers at ICCV 2025 (22 Main, and 6 Workshops).