Home  | News

14.06.2024

Tiny logo
Teaser image to MCML at CVPR 2024

MCML at CVPR 2024

17 Accepted Papers (13 Main, and 4 Workshops)

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, Jun 17-21, 2024

We are happy to announce that MCML researchers have contributed a total of 17 papers to CVPR 2024: 13 Main, and 4 Workshop papers. Congrats to our researchers!

Main Track (13 papers)

M. Brahimi • B. Haefner • Z. Ye • B. Goldluecke • D. Cremers
Sparse Views, Near Light: A Practical Paradigm for Uncalibrated Point-light Photometric Stereo.
CVPR 2024 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI

Y. Chen • Y. Di • G. Zhai • F. Manhardt • C. Zhang • R. Zhang • F. Tombari • N. NavabB. Busam
SecondPose: SE(3)-Consistent Dual-Stream Feature Fusion for Category-Level Pose Estimation.
CVPR 2024 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI

V. EhmM. Gao • P. Roetzer • M. Eisenberger • D. Cremers • F. Bernard
Partial-to-Partial Shape Matching with Geometric Consistency.
CVPR 2024 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI GitHub

M. Ghahremani • M. Khateri • B. Jian • B. Wiestler • E. Adeli • C. Wachinger
H-ViT: A Hierarchical Vision Transformer for Deformable Image Registration.
CVPR 2024 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI

K. Han • D. MuhleF. WimbauerD. Cremers
Boosting Self-Supervision for Single-View Scene Completion via Knowledge Distillation.
CVPR 2024 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI

J. Huang • H. Yu • K.-T. Yu • N. Navab • S. Ilic • B. Busam
MatchU: Matching Unseen Objects for 6D Pose Estimation from RGB-D Images.
CVPR 2024 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI

H. Jung • S.-C. Wu • P. Ruhkamp • G. Zhai • H. Schieber • G. Rizzoli • P. Wang • H. Zhao • L. Garattoni • D. Roth • S. Meier • N. NavabB. Busam
HouseCat6D -- A Large-Scale Multi-Modal Category Level 6D Object Perception Dataset with Household Objects in Realistic Scenarios.
CVPR 2024 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI

H. Li • C. Shen • P. Torr • V. Tresp • J. Gu
Self-Discovering Interpretable Diffusion Latent Directions for Responsible Text-to-Image Generation.
CVPR 2024 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI GitHub

A. Toker • M. Eisenberger • D. Cremers • L. Leal-Taixé
SatSynth: Augmenting Image-Mask Pairs Through Diffusion Models for Aerial Semantic Segmentation.
CVPR 2024 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI

S. WeberT. DagèsM. GaoD. Cremers
Finsler-Laplace-Beltrami Operators with Application to Shape Analysis.
CVPR 2024 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI

F. Wimbauer • B. Wu • E. Schoenfeld • X. Dai • J. Hou • Z. He • A. Sanakoyeu • P. Zhang • S. Tsai • J. Kohler • C. Rupprecht • D. Cremers • P. Vajda • J. Wang
Cache Me if You Can: Accelerating Diffusion Models through Block Caching.
CVPR 2024 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI GitHub

S. Weber • B. Zöngür • N. AraslanovD. Cremers
Flattening the Parent Bias: Hierarchical Semantic Segmentation in the Poincaré Ball.
CVPR 2024 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI

Y. Xia • L. Shi • Z. Ding • J. F. Henriques • D. Cremers
Text2Loc: 3D Point Cloud Localization from Natural Language.
CVPR 2024 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI GitHub

Workshops (4 papers)

A. HöhlI. Obadic • M.-Á. Fernández-Torres • D. Oliveira • X. Zhu;
Recent Trends Challenges and Limitations of Explainable AI in Remote Sensing.
Workshop @CVPR 2024 - Workshop at the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. URL

I. Obadic • A. Levering • L. Pennig • D. Oliveira • D. Marcos • X. Zhu
Contrastive Pretraining for Visual Concept Explanations of Socioeconomic Outcomes.
Workshop @CVPR 2024 - Workshop at the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI

C. Reich • B. Debnath • D. Patel • T. Prangemeier • D. Cremers • S. Chakradhar
Deep Video Codec Control for Vision Models.
Workshop @CVPR 2024 - Workshop at the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI

C. Reich • O. Hahn • D. Cremers • S. Roth • B. Debnath
A Perspective on Deep Vision Performance with Standard Image and Video Codecs.
Workshop @CVPR 2024 - Workshop at the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI

#research #top-tier-work #busam #cremers #kilbertus #navab #tresp #wachinger #zhu
Subscribe to RSS News feed

Related

Link to Needle in a Haystack: Finding Exact Moments in Long Videos

05.02.2026

Needle in a Haystack: Finding Exact Moments in Long Videos

ECCV 2024 research introduces RGNet, an AI model that finds exact moments in long videos using unified retrieval and grounding.

Link to Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

04.02.2026

Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

Benjamin Busam leads the scientific design of the “CuBy” satellite network, delivering AI-ready Earth observation data for Bavaria.

Link to Cracks in the foundations of cosmology

30.01.2026

Cracks in the Foundations of Cosmology

Daniel Grün examines cosmological tensions that challenge the Standard Model and may point toward new physics.

Link to How Machines Can Discover Hidden Rules Without Supervision

29.01.2026

How Machines Can Discover Hidden Rules Without Supervision

ICLR 2025 research shows how self-supervised learning uncovers hidden system dynamics from unlabeled, high-dimensional data.

Link to Matthias Nießner Co-Founds AI Startup Synthesia

28.01.2026

Matthias Nießner Co-Founds AI Startup Synthesia

Julien Gagneur comments on DeepMind’s AlphaGenome, highlighting its precision and remaining challenges in genome prediction.

Back to Top