Home  | News

03.12.2021

Tiny logo
Teaser image to MCML at NeurIPS 2021

MCML at NeurIPS 2021

Seven Accepted Papers (2 Main, and 5 Workshops)

35th Conference on Neural Information Processing Systems, Virtual, Dec 06-14, 2021

We are happy to announce that MCML researchers have contributed a total of 7 papers to NeurIPS 2021: 2 Main, and 5 Workshop papers. Congrats to our researchers!

Main Track (2 papers)

J. MoosbauerJ. HerbingerG. Casalicchio • M. Lindauer • B. Bischl
Explaining Hyperparameter Optimization via Partial Dependence Plots.
NeurIPS 2021 - 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. URL GitHub

Y. Zhang • A. KhakzarY. LiA. Farshad • S. T. Kim • N. Navab
Fine-Grained Neural Network Explanation by Identifying Input Features with Predictive Information.
NeurIPS 2021 - Track on Datasets and Benchmarks at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. URL

Workshops (5 papers)

B. BischlG. CasalicchioM. Feurer • P. Gijsbers • F. Hutter • M. Lang • R. G. Mantovani • J. N. van Rijn • J. Vanschoren
OpenML Benchmarking Suites.
Track on Datasets and Benchmarks @NeurIPS 2021 - Track on Datasets and Benchmarks at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. URL

M. Mittermeier • M. WeigertD. Rügamer
Identifying the atmospheric drivers of drought and heat using a smoothed deep learning approach.
Tackling Climate Change with ML @NeurIPS 2021 - Workshop on Tackling Climate Change with Machine Learning at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. PDF

T. WeberM. IngrischB. BischlD. Rügamer
Towards modelling hazard factors in unstructured data spaces using gradient-based latent interpolation.
Deep Generative Models and Downstream Applications @NeurIPS 2021 - Workshop on Deep Generative Models and Downstream Applications at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. PDF

T. WeberM. Ingrisch • M. Fabritius • B. BischlD. Rügamer
Survival-oriented embeddings for improving accessibility to complex data structures.
Bridging the Gap: from ML Research to Clinical Practice @NeurIPS 2021 - Workshop on Bridging the Gap: from Machine Learning Research to Clinical Practice at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. arXiv

M. Weber • J. Xie • M. Collins • Y. Zhu • H. Adam • B. Green • A. Geiger • D. Cremers • A. Ošep • L. Leal-Taixé • P. Voigtlaender • B. Chen
STEP: Segmenting and Tracking Every Pixel.
Track on Datasets and Benchmarks @NeurIPS 2021 - Track on Datasets and Benchmarks at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. PDF

#research #top-tier-work #bischl #cremers #feurer #ingrisch #kuechenhoff #leal-taixe #navab #rueckert #ruegamer
Subscribe to RSS News feed

Related

Link to Needle in a Haystack: Finding Exact Moments in Long Videos

05.02.2026

Needle in a Haystack: Finding Exact Moments in Long Videos

ECCV 2024 research introduces RGNet, an AI model that finds exact moments in long videos using unified retrieval and grounding.

Read more
Link to Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

04.02.2026

Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

Benjamin Busam leads the scientific design of the “CuBy” satellite network, delivering AI-ready Earth observation data for Bavaria.

Read more
Link to Cracks in the foundations of cosmology

30.01.2026

Cracks in the Foundations of Cosmology

Daniel Grün examines cosmological tensions that challenge the Standard Model and may point toward new physics.

Read more
Link to How Machines Can Discover Hidden Rules Without Supervision

29.01.2026

How Machines Can Discover Hidden Rules Without Supervision

ICLR 2025 research shows how self-supervised learning uncovers hidden system dynamics from unlabeled, high-dimensional data.

Read more
Link to Matthias Nießner Co-Founds AI Startup Synthesia

28.01.2026

Matthias Nießner Co-Founds AI Startup Synthesia

Julien Gagneur comments on DeepMind’s AlphaGenome, highlighting its precision and remaining challenges in genome prediction.

Read more
Back to Top