Home  | News

02.01.2020

Tiny logo
Teaser image to MCML Researchers in Highly-Ranked Journals

Nine Papers in 2020 Highlight Scientific Impact

We are happy to announce that MCML researchers are represented in 2020 with nine papers in highly-ranked journals. Congrats to our researchers!

M. Lotfollahi • M. Naghipourfar • F. J. Theis • F. A. Wolf
Conditional out-of-distribution generation for unpaired data using transfer VAE.
Bioinformatics 36.Supplement 2. Dec. 2020. DOI
S. Klau • M.-L. Martin-Magniette • A.-L. Boulesteix • S. Hoffmann
Sampling uncertainty versus method uncertainty: a general framework with applications to omics biomarker selection.
Biometrical Journal 62.3. May. 2020. DOI
M. Herrmann • P. Probst • R. Hornung • V. Jurinovic • A.-L. Boulesteix
Large-scale benchmark study of survival prediction methods using multi-omics data.
Briefings in Bioinformatics. Aug. 2020. DOI
J. Kranich • N.-K. Chlis • L. Rausch • A. Latha • M. Schifferer • T. Kurz • A. F.-A. Kia • M. Simons • F. J. Theis • T. Brocker
In vivo identification of apoptotic and extracellular vesicle-bound live cells using image-based deep learning.
Journal of Extracellular Vesicles 9.1. Jul. 2020. DOI
D. S. Fischer • Y. Wu • B. Schubert • F. J. Theis
Predicting antigen specificity of single T cells based on TCR CDR3 regions.
Molecular Systems Biology 16.8. Aug. 2020. DOI
V. Bergen • M. Lange • S. Peidli • F. A. Wolf • F. J. Theis
Generalizing RNA velocity to transient cell states through dynamical modeling.
Nature Biotechnology 38. Aug. 2020. DOI
S. Sachs • A. Bastidas-Ponce • S. Tritschler • M. Bakhti • A. Böttcher • M. A. Sánchez-Garrido • M. Tarquis-Medina • M. Kleinert • K. Fischer • S. Jall • A. Harger • E. Bader • S. Roscioni • S. Ussar • A. Feuchtinger • B. Yesildag • A. Neelakandhan • C. B. Jensen • M. Cornu • B. Yang • B. Finan • R. D. DiMarchi • M. H. Tschöp • F. J. Theis • S. M. Hofmann • T. D. Müller • H. Lickert
Targeted pharmacological therapy restores β-cell function for diabetes remission.
Nature Metabolism 2. Feb. 2020. DOI
N.-K. Chlis • L. Rausch • T. Brocker • J. Kranich • F. J. Theis
Predicting single-cell gene expression profiles of imaging flow cytometry data with machine learning.
Nucleic Acids Research 48.20. Nov. 2020. DOI
C. Stachl • Q. Au • R. Schoedel • S. D. Gosling • G. M. Harari • D. Buschek • S. T. Völkel • T. Schuwerk • M. Oldemeier • T. Ullmann • H. Hussmann • B. Bischl • M. Bühner
Predicting personality from patterns of behavior collected with smartphones.
Proceedings of the National Academy of Sciences 117.30. Jul. 2020. DOI
#research #top-tier-work #bischl #boulesteix #theis
Subscribe to RSS News feed

Related

Link to Blind Matching – Aligning Images and Text Without Training or Labels

15.01.2026

Blind Matching – Aligning Images and Text Without Training or Labels

CVPR 2025 research from Daniel Cremers’ group shows how images and text can be aligned without training data, labels, or paired examples.

Link to High-Res Images, Less Wait: A Simple Flow for Image Generation

08.01.2026

High-Res Images, Less Wait: A Simple Flow for Image Generation

ECCV 2024 research led by Björn Ommer’s team enables faster high-resolution image generation by boosting diffusion models with flow matching.

Link to

02.01.2026

MCML Researchers in Highly-Ranked Journals

We are excited to announce that MCML researchers have four papers published in highly-ranked journals in 2026.

Link to "See, Don’t Assume": Revealing and Reducing Gender Bias in AI

18.12.2025

"See, Don’t Assume": Revealing and Reducing Gender Bias in AI

ICLR 2025 research led by Zeynep Akata’s team reveals and reduces gender bias in popular vision-language AI models.

Link to Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine

16.12.2025

Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine

MCML PI Fabian Theis discusses AI-driven precision medicine and its growing impact on individualized healthcare and biomedical research.

Back to Top