Home  | News

02.01.2019

Tiny logo
Teaser image to MCML Researchers in Highly-Ranked Journals

Five Papers in 2019 Highlight Scientific Impact

We are happy to announce that MCML researchers are represented in 2019 with five papers in highly-ranked journals. Congrats to our researchers!

L. M. Weber • W. Saelens • R. Cannoodt • C. Soneson • A. Hapfelmeier • P. P. Gardner • A.-L. Boulesteix • Y. Saeys • M. D. Robinson
Essential guidelines for computational method benchmarking.
Genome Biology 20.125. Jun. 2019. DOI
P. Probst • A.-L. BoulesteixB. Bischl
Tunability: Importance of Hyperparameters of Machine Learning Algorithms.
Journal of Machine Learning Research 20. Mar. 2019. PDF
M. D. Luecken • F. J. Theis
Current best practices in single‐cell RNA‐seq analysis: a tutorial.
Molecular Systems Biology 15.e8746. Jun. 2019. DOI GitHub
M. Lotfollahi • F. A. Wolf • F. J. Theis
scGen predicts single-cell perturbation responses.
Nature Methods 16.8. Jul. 2019. DOI GitHub
F. Erhard • M. A. P. Baptista • T. Krammer • T. Hennig • M. Lange • P. Arampatzi • C. S. Jürges • F. J. Theis • A.-E. Saliba • L. Dölken
scSLAM-seq reveals core features of transcription dynamics in single cells.
Nature 571. Jul. 2019. DOI
#research #top-tier-work #bischl #boulesteix #theis
Subscribe to RSS News feed

Related

Link to Blind Matching – Aligning Images and Text Without Training or Labels

15.01.2026

Blind Matching – Aligning Images and Text Without Training or Labels

CVPR 2025 research from Daniel Cremers’ group shows how images and text can be aligned without training data, labels, or paired examples.

Link to High-Res Images, Less Wait: A Simple Flow for Image Generation

08.01.2026

High-Res Images, Less Wait: A Simple Flow for Image Generation

ECCV 2024 research led by Björn Ommer’s team enables faster high-resolution image generation by boosting diffusion models with flow matching.

Link to

02.01.2026

MCML Researchers in Highly-Ranked Journals

We are excited to announce that MCML researchers have four papers published in highly-ranked journals in 2026.

Link to "See, Don’t Assume": Revealing and Reducing Gender Bias in AI

18.12.2025

"See, Don’t Assume": Revealing and Reducing Gender Bias in AI

ICLR 2025 research led by Zeynep Akata’s team reveals and reduces gender bias in popular vision-language AI models.

Link to Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine

16.12.2025

Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine

MCML PI Fabian Theis discusses AI-driven precision medicine and its growing impact on individualized healthcare and biomedical research.

Back to Top