holds the Chair of Human-Centered Ubiquitous Media at LMU Munich.
The group conducts research at the crossroads of human computer interaction, media technology, and ubiquitous computing. The research interests are in challenges that pose hard questions for basic research, but at the same time have a clear application to specific domains or impact on society. The overall research question is: how can we enhance human abilities through digital technologies?
Captions are a valuable scaffold for language learners, aiding comprehension and vocabulary acquisition. Past work has proposed enhancements such as keyword highlights for increased learning gains. However, little is known about learners’ experience with enhanced captions, although this is critical for adoption in everyday life. We conducted a survey and focus group to elicit learner preferences and requirements and implemented a processing pipeline for enhanced captions with keyword highlights, time-synchronized keyword highlights, and keyword captions. A subsequent online study (n = 66) showed that time-synchronized keyword highlights were the preferred design for learning but were perceived as too distracting to replace standard captions in everyday viewing scenarios. We conclude that keyword highlights and time-synchronization are suitable for integrating learning into an entertaining everyday- life activity, but the design should be optimized to provide a more seamless experience.
Rapid Serial Visual Presentation (RSVP) improves the reading speed for optimizing the user’s information processing capabilities on Virtual Reality (VR) devices. Yet, the user’s RSVP reading performance changes over time while the reading speed remains static. In this paper, we evaluate pupil dilation as a physiological metric to assess the mental workload of readers in real-time. We assess mental workload under different background lighting and RSVP presentation speeds to estimate the optimal color that discriminates the pupil diameter varying RSVP presentation speeds. We discovered that a gray background provides the best contrast for reading at various presentation speeds. Then, we conducted a second study to evaluate the classification accuracy of mental workload for different presentation speeds. We find that pupil dilation relates to mental workload when reading with RSVP. We discuss how pupil dilation can be used to adapt the RSVP speed in future VR applications to optimize information intake.
The proliferation of mobile Virtual Reality (VR) headsets shifts our interaction with virtual worlds beyond our living rooms into shared spaces. Consequently, we are entrusting more and more personal data to these devices, calling for strong security measures and authentication. However, the standard authentication method of such devices - entering PINs via virtual keyboards - is vulnerable to shoulder-surfing, as movements to enter keys can be monitored by an unnoticed observer. To address this, we evaluated masking techniques to obscure VR users’ input during PIN authentication by diverting their hand movements. Through two experimental studies, we demonstrate that these methods increase users’ security against shoulder-surfing attacks from observers without excessively impacting their experience and performance. With these discoveries, we aim to enhance the security of future VR authentication without disrupting the virtual experience or necessitating additional hardware or training of users.
As artificial intelligence becomes increasingly pervasive, it is essential that we understand the implications of bias in machine learning. Many developers rely on crowd workers to generate and annotate datasets for machine learning applications. However, this step risks embedding training data with labeler bias, leading to biased decision-making in systems trained on these datasets. To characterize labeler bias, we created a face dataset and conducted two studies where labelers of different ethnicity and sex completed annotation tasks. In the first study, labelers annotated subjective characteristics of faces. In the second, they annotated images using bounding boxes. Our results demonstrate that labeler demographics significantly impact both subjective and accuracy-based annotations, indicating that collecting a diverse set of labelers may not be enough to solve the problem. We discuss the consequences of these findings for current machine learning practices to create fair and unbiased systems.
Future domestic robots will become integral parts of our homes. They will have various sensors that continuously collect data and varying locomotion and interaction capabilities, enabling them to access all rooms and physically manipulate the environment. This raises many privacy concerns. We investigate how such concerns can be mitigated, using all possibilities enabled by the robot’s novel locomotion and interaction abilities. First, we found that privacy concerns increase with advanced locomotion and interaction capabilities through an online survey (N=90). Second, we conducted three focus groups (N=22) to construct 86 patterns to communicate the states of microphones, cameras, and the internet connectivity of domestic robots. Lastly, we conducted a large-scale online survey (N=1720) to understand which patterns perform best regarding trust, privacy, understandability, notification qualities, and user preference. Our final set of communication patterns will guide developers and researchers to ensure a privacy-preserving future with domestic robots.
Labels inform smart home users about the privacy of devices before purchase and during use. Yet, current privacy labels fail to fully reflect the impact of advanced device configuration options like sensor state control. Based on the successful implementation of related privacy and security labels, we designed extended static and interactive labels that reflect sensor states and device connectivity. We first did expert interviews (N=10) that informed the final label design. Second, we ran an online survey (N=160) to assess the interpretation and usability of the novel interactive privacy label. Lastly, we conducted a second survey (N=120) to investigate how well our interactive labels educate users about sensor configuration. We found that most participants successfully used the interactive label and retrieved sensor information more efficiently and correctly. We discuss our findings in the context of a potential shift in label use toward control and use-case-based interaction.
In a world increasingly reliant on artificial intelligence, it is more important than ever to consider the ethical implications of artificial intelligence. One key under-explored challenge is labeler bias — bias introduced by individuals who label datasets — which can create inherently biased datasets for training and subsequently lead to inaccurate or unfair decisions in healthcare, employment, education, and law enforcement. Hence, we conducted a study (N=98) to investigate and measure the existence of labeler bias using images of people from different ethnicities and sexes in a labeling task. Our results show that participants hold stereotypes that influence their decision-making process and that labeler demographics impact assigned labels. We also discuss how labeler bias influences datasets and, subsequently, the models trained on them. Overall, a high degree of transparency must be maintained throughout the entire artificial intelligence training process to identify and correct biases in the data as early as possible.
The modern workplace has been optimized towards increasing productivity, often at the cost of long-term worker wellbeing. This systemic issue has been acknowledged in both research and practice, but has not yet been solved. There is a notable lack of practical methods of incorporating physical activity and other wellbeing practices into productive workplace activities. We see a gap between research endeavors and industry practice that motivates a call for increased collaboration between the two parties. In response, our workshop aims to bring together researchers and practitioners to work together in identifying a set of grand challenges for the field. Through collaboration, we will create a concrete research agenda to create a resilient future workplace that explicitly incorporates holistic worker wellbeing.
Smartphone overuse is hyper-prevalent in society, and developing tools to prevent this overuse has become a focus of HCI. However, there is a lack of work investigating smartphone overuse interventions over the long term. We collected usage data from N = 1, 039 users of one sec over an average of 13.4 weeks and qualitative insights from 249 of the users through an online survey. We found that users overwhelmingly choose to target Social Media apps. We found that the short design frictions introduced by one sec effectively reduce how often users attempt to open target apps and lead to more intentional app-openings over time. Additionally, we found that users take periodic breaks from one sec interventions, and quickly rebound from a pattern of overuse when returning from breaks. Overall, we contribute findings from a longitudinal investigation of design frictions in the wild and identify usage patterns from real users in practice.
Social interaction is a crucial part of what it means to be human. Maintaining a healthy social life is strongly tied to positive outcomes for both physical and mental health. While we use personal informatics data to reflect on many aspects of our lives, technology-supported reflection for social interactions is currently under-explored. To address this, we first conducted an online survey (N=124) to understand how users want to be supported in their social interactions. Based on this, we designed and developed an app for users to track and reflect on their social interactions and deployed it in the wild for two weeks (N=25). Our results show that users are interested in tracking meaningful in-person interactions that are currently untraced and that an app can effectively support self-reflection on social interaction frequency and social load. We contribute insights and concrete design recommendations for technology-supported reflection for social interaction.
This paper explores (1) the role of metaphors in physical data representations and (2) the concept of tacit data: implicitly known data which are hard to uncover. In a semester course with twenty-three students, five teams explored how to represent self-chosen ‘tacit data’ in a visualisation, haptification, and dynamic physicalisation. Throughout these phases, our notion of tacit data evolved, resulting in a proposed working definition. Moreover, we noticed that metaphors played an increasingly important role. Based on analysis of students’ work and interviews with them, we found that tacit data and physical data representations need metaphors. For haptifications and physicalisations, metaphors help to circumvent limitations, curate data, and communicate to the audience. As tacit data were seen as ‘soft’ and difficult to quantify, metaphors made the data workable. Furthermore, tacit data benefit from physical representations, which offer further dimensions to represent the feeling and intimate aspects of data.
Advances in technology have made humans more productive at work but often at the cost of wellbeing, with issues like sedentary behavior, social isolation, and excessive screen time affecting modern knowledge workers. Despite efforts to introduce healthy interventions, such as standing desks, uptake remains low due to the intention-behavior gap. This thesis explores ways to design technology that encourages healthy behaviors, using passive and active behavior change methods to motivate users, and proposes a design framework for ethical behavior change technologies that promote a healthier, more productive workplace. (Shortened).
Communication is crucial for interpersonal connection, but sometimes we simply cannot find the right words. Some data, such as complex emotions, are either hard to quantify or are otherwise difficult to communicate. We have access to numerous personal statistics from quantified self devices, but hidden data are either untracked or require abstraction. In this paper, we explore physicalizations to communicate hidden data between couples. We recruited six couples (N=12 participants, 163 telegram responses) to participate in a two-week sensitization diary study followed by two participatory co-design sessions. We then hosted a one-day expert prototyping workshop (N=5) to create tangible artifacts based on the findings of the participatory phase. By iterating on the topic in three ways, we contribute (i) a design framework for understanding and tangibly representing hidden data, (ii) a discussion on the appropriateness of these methodologies, and (iii) open research questions to guide future research in the field.
Sedentary behavior is endemic in modern workplaces, contributing to negative physical and mental health outcomes. Although adjustable standing desks are increasing in popularity, people still avoid standing. We developed an open-source plug-and-play system to remotely control standing desks and investigated three system modes with a three-week in-the-wild user study (N=15). Interval mode forces users to stand once per hour, causing frustration. Adaptive mode nudges users to stand every hour unless the user has stood already. Smart mode, which raises the desk during breaks, was the best rated, contributing to increased standing time with the most positive qualitative feedback. However, non-computer activities need to be accounted for in the future. Therefore, our results indicate that a smart standing desk that shifts modes at opportune times has the most potential to reduce sedentary behavior in the workplace. We contribute our open-source system and insights for future intelligent workplace well-being systems.
Most smart home devices have multiple sensors, such as cameras and microphones; however, most cannot be controlled individually. Tangible privacy mechanisms provide control over individual sensors and instill high certainty of privacy. Yet, it remains unclear how they can be used in future smart homes. We conducted three studies to understand how tangible privacy mechanisms scale across multiple devices and respond to user needs. First, we conducted a focus group (N=8) on speculative tangible control artifacts to understand the user perspective. Second, we ran a workshop at a human-computer interaction conference (N=8) on tangible privacy. Third, we conducted a six-week in-the-wild study with a tangible, static privacy dashboard across six households. Our findings help to contrast the need for tangible privacy mechanisms on the sensor level with user needs on a smart home level. Finally, we discuss our design implications for future smart homes through the lens of inclusive privacy.
We are constantly surrounded by technology that collects and processes sensitive data, paving the way for privacy violations. Yet, current research investigating technology-facilitated privacy violations in the physical world is scattered and focused on specific scenarios or investigates such violations purely from an expert’s perspective. Informed through a large-scale online survey, we first construct a scenario taxonomy based on user-experienced privacy violations in the physical world through technology. We then validate our taxonomy and establish mitigation strategies using interviews and co-design sessions with privacy and security experts. In summary, this work contributes (1) a refined scenario taxonomy for technology-facilitated privacy violations in the physical world, (2) an understanding of how privacy violations manifest in the physical world, (3) a decision tree on how to inform users, and (4) a design space to create notices whenever adequate. With this, we contribute a conceptual framework to enable a privacy-preserving technology-connected world.
Private homes are increasingly becoming smart spaces. While smart homes promise comfort, they expose most intimate spaces to security and privacy risks. Unfortunately, most users today are not equipped with the right tools to assess the vulnerabilities or privacy practices of smart devices. Further, users might lose track of the devices installed in their homes or are unaware of devices placed by a partner or host. We developed SaferHome, an interactive digital-physical privacy framework, to provide smart home users with security and privacy assessments and a sense of device location. SaferHome includes a digital list view and physical and digital dashboards that map real floor plans. We evaluated SaferHome with eight households in the wild. We find that users adopted various strategies to integrate the dashboards into their understanding and interpretation of smart home privacy. We present implications for the design of future smart home privacy frameworks that are impacted by technical affinity, device types, device ownership, and tangibility of assessments.
While systems that use Artificial Intelligence (AI) are increasingly becoming part of everyday technology use, we do not fully understand how AI changes design processes. A structured understanding of how designers work with AI is needed to improve the design process and educate future designers. To that end, we conducted interviews with designers who participated in projects which used AI. While past work focused on AI systems created by experienced designers, we focus on the perspectives of a diverse sample of interaction designers. Our results show that the design process of an interactive system is affected when AI is integrated and that design teams adapt their processes to accommodate AI. Based on our data, we contribute four approaches adopted by interaction designers working with AI: a priori, post-hoc, model-centric, and competence-centric. Our work contributes a pragmatic account of how design processes for AI systems are enacted.
Users avoid engaging with privacy policies because they are lengthy and complex, making it challenging to retrieve relevant information. In response, research proposed contextual privacy policies (CPPs) that embed relevant privacy information directly into their affiliated contexts. To date, CPPs are limited to concept showcases. This work evolves CPPs into a production tool that automatically extracts and displays concise policy information. We first evaluated the technical functionality on the US’s 500 most visited websites with 59 participants. Based on our results, we further revised the tool to deploy it in the wild with 11 participants over ten days. We found that our tool is effective at embedding CPP information on websites. Moreover, we found that the tool’s usage led to more reflective privacy behavior, making CPPs powerful in helping users understand the consequences of their online activities. We contribute design implications around CPP presentation to inform future systems design.
©all images: LMU | TUM