Home  | Research | Groups | Fabian Scheipl

Research Group Fabian Scheipl


Link to website at LMU PI Matchmaking

Fabian Scheipl

PD Dr.

Principal Investigator

Fabian Scheipl

is Head of the Workgroup Functional Data Analysis at LMU Munich.

The group works on methodology and software implementations that process, describe, visualize and model functional data, such as curves, trajectories, or even higher dimensional surfaces. The research focuses on the analysis of functional data using generalized additive regression and on both supervised and unsupervised methods for functional data, for example for automated outlier detection or dimension reduction.

Recent News @MCML

Link to MCML Researchers With 93 Papers in Highly-Ranked Journals

MCML Researchers With 93 Papers in Highly-Ranked Journals

Link to MCML at ECML-PKDD 2022

MCML at ECML-PKDD 2022

Link to MCML Researchers With 28 Papers in Highly-Ranked Journals

MCML Researchers With 28 Papers in Highly-Ranked Journals

Link to MCML at ECML-PKDD 2020

MCML at ECML-PKDD 2020

Publications @MCML

2025


[20]
B. Pulido • A. M. Franco-Pereira • R. E. Lillo • F. Scheipl
Area-based epigraph and hypograph indices for functional outlier detection.
Preprint (Jul. 2025). arXiv

2024


[19] Top Journal
M. Herrmann • D. Kazempour • F. Scheipl • P. Kröger
Enhancing cluster analysis via topological manifold learning.
Data Mining and Knowledge Discovery 38. Apr. 2024. DOI

2023


[18]
J. Gauss • F. ScheiplM. Herrmann
DCSI–An improved measure of cluster separability based on separation and connectedness.
Preprint (Oct. 2023). arXiv

[17]
S. Hoffmann • F. ScheiplA.-L. Boulesteix
Reproduzierbare und replizierbare Forschung.
Moderne Verfahren der Angewandten Statistik. Sep. 2023. DOI

[16]
A. Volkmann • A. Stöcker • F. Scheipl • S. Greven
Multivariate Functional Additive Mixed Models.
Statistical Modelling 23.4. Aug. 2023. DOI

[15]
M. HerrmannF. PfistererF. Scheipl
A geometric framework for outlier detection in high-dimensional data.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery e1491. Apr. 2023. DOI

2022


[14]
L. Bothmann • S. Strickroth • G. CasalicchioD. Rügamer • M. Lindauer • F. ScheiplB. Bischl
Developing Open Source Educational Resources for Machine Learning and Data Science.
Teaching Machine Learning and Artificial Intelligence Workshop @ECML-PKDD 2022 - 3rd Teaching Machine Learning and Artificial Intelligence Workshop at the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Grenoble, France, Sep 19-23, 2022. URL



[11] Top Journal
W. Hartl • P. Kopper • A. BenderF. Scheipl • A. G. Day • G. Elke • H. Küchenhoff
Protein intake and outcome of critically ill patients: analysis of a large international database using piece-wise exponential additive mixed models.
Critical Care 26.7. Jan. 2022. DOI

2021


[10]
M. HerrmannF. Scheipl
A Geometric Perspective on Functional Outlier Detection.
Stats 4.4. Nov. 2021. DOI

[9]
A. BauerF. ScheiplH. Küchenhoff
Registration for Incomplete Non-Gaussian Functional Data.
Preprint (Aug. 2021). arXiv

2020


[8]
M. HerrmannF. Scheipl
Unsupervised Functional Data Analysis via Nonlinear Dimension Reduction.
Preprint (Dec. 2020). arXiv

[7] A Conference
A. BenderD. RügamerF. ScheiplB. Bischl
A General Machine Learning Framework for Survival Analysis.
ECML-PKDD 2020 - European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Virtual, Sep 14-18, 2020. DOI

[6]
F. Scheipl • J. Goldsmith • J. Wrobel
tidyfun: Tools for Tidy Functional Data. R package.
2020. URL GitHub

[5]
J. Wrobel • A. Bauer • J. McDonnel • F. Scheipl
registr: Curve Registration for Exponential Family Functional Data. R package.
2020. GitHub

2019


[4]
F. Pfisterer • L. Beggel • X. Sun • F. ScheiplB. Bischl
Benchmarking time series classification -- Functional data vs machine learning approaches.
Preprint (Nov. 2019). arXiv

[3]
C. Happ • F. Scheipl • A.-A. Gabriel • S. Greven
A general framework for multivariate functional principal component analysis of amplitude and phase variation.
Stat 8.2. Feb. 2019. DOI

[2]
J. Goldsmith • F. Scheipl • L. Huang • J. Wrobel • C. Di • J. Gellar • J. Harezlak • M. W. McLean • B. Swihart • L. Xiao • C. Crainiceanu • P. T. Reiss
refund: Regression with Functional Data.
2019. URL

2018


[1]
J. Minkwitz • F. Scheipl • E. Binder • C. Sander • U. Hegerl • H. Himmerich
Generalised functional additive models for brain arousal state dynamics.
IPEG 2018 - 20th International Pharmaco-EEG Society for Preclinical and Clinical Electrophysiological Brain Research Meeting. Zurich, Switzerland, Nov 21-25, 2018. DOI