Home  | Research | Groups | Rauhut

Research Group Holger Rauhut


Link to website at LMU PI Matchmaking

Holger Rauhut

Prof. Dr.

Principal Investigator

Holger Rauhut

is Professor of Mathematical Data Science and Artificial Intelligence at LMU Munich.

His focus on the intersection of mathematics and artificial intelligence, aiming for both a mathematical understanding of artificial intelligence and artificial intelligence for mathematical problems.

Team members @MCML

PostDocs

Link to website

Sakirudeen Abdulsalaam

Dr.

Link to website

Leonardo Galli

Dr.

Link to website

Ulrich Terstiege

Dr.

Link to website

Tizian Wenzel

Dr.

PhD Students

Link to website

Wiebke Bartolomaeus

Link to website

Kurt Izak Cabanilla

Link to website

Arinze Lawrence Folarin

Link to website

Garam Kim

Gabin Maxime Nguegnang

Gabin Maxime Nguegnang

Link to website

Laura Paul

Link to website

Shan Wei

Recent News @MCML

Link to MCML Researchers With 130 Papers in Highly-Ranked Journals

02.01.2025

MCML Researchers With 130 Papers in Highly-Ranked Journals

Link to MCML at NeurIPS 2024

08.12.2024

MCML at NeurIPS 2024

31 Accepted Papers (23 Main, and 8 Workshops)

Link to MCML at ECCV 2024

27.09.2024

MCML at ECCV 2024

29 Accepted Papers (23 Main, and 6 Workshops)

Link to MCML Researchers With 93 Papers in Highly-Ranked Journals

02.01.2024

MCML Researchers With 93 Papers in Highly-Ranked Journals

Publications @MCML

2025


[11] Top Journal
A. A. Guth • S. AbdulsalaamH. Rauhut • D. Heberling
Numerical Analysis of Mask-Based Phase Reconstruction in Phaseless Spherical Near-Field Antenna Measurements.
Sensors 25.18. Sep. 2025. DOI

[10]
E. M. Achour • K. Kohn • H. Rauhut
The Riemannian Geometry associated to Gradient Flows of Linear Convolutional Networks.
Preprint (Jul. 2025). arXiv

[9]
T. Karvonen • G. Santin • T. Wenzel
General superconvergence for kernel-based approximation.
Preprint (May. 2025). arXiv

2024


[8] A* Conference
F. Hoppe • C. M. Verdun • H. LausF. KrahmerH. Rauhut
Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

[7] A* Conference
F. Hoppe • C. M. Verdun • H. Laus • S. Endt • M. I. Menzel • F. KrahmerH. Rauhut
Imaging with Confidence: Uncertainty Quantification for High-dimensional Undersampled MR Images.
ECCV 2024 - 18th European Conference on Computer Vision. Milano, Italy, Sep 29-Oct 04, 2024. DOI GitHub

[6]
F. Hoppe • C. M. Verdun • F. Krahmer • M. I. Menzel • H. Rauhut
With or Without Replacement? Improving Confidence in Fourier Imaging.
CoSeRa 2024 - International Workshop on the Theory of Computational Sensing and its Applications to Radar, Multimodal Sensing and Imaging. Santiago de Compostela, Spain, Sep 18-20, 2024. DOI

[5] Top Journal
G. M. NguegnangH. RauhutU. Terstiege
Convergence of gradient descent for learning linear neural networks.
Advances in Continuous and Discrete Models 2024.23. Jul. 2024. DOI

2023


[4]
F. Hoppe • C. M. VerdunH. LausF. KrahmerH. Rauhut
Uncertainty Quantification For Learned ISTA.
MLSP 2023 - IEEE Workshop on Machine Learning for Signal Processing. Rome, Italy, Sep 17-20, 2023. DOI

[3]
F. Hoppe • F. KrahmerC. M. Verdun • M. I. Menzel • H. Rauhut
Uncertainty quantification for sparse Fourier recovery.
Preprint (Sep. 2023). arXiv

[2]
F. Hoppe • F. KrahmerC. M. Verdun • M. I. Menzel • H. Rauhut
Sampling Strategies for Compressive Imaging Under Statistical Noise.
SampTA 2023 - 14th International Conference on Sampling Theory and Applications. Yale, CT, USA, Jul 10-14, 2023. DOI

[1]
H.-H. Chou • H. Rauhut • R. Ward
Robust implicit regularization via weight normalization.
Preprint (May. 2023). arXiv