is Professor of Computational Statistics & Data Science at LMU Munich.
His research is at the intersection of mathematical and computational statistics. He develops statistical methods, derives theoretical guarantees and scalable algorithms, packages them in user-friendly software, and collaborates with domain experts to solve problems in diverse areas.
Hyperparameter optimization is crucial for obtaining peak performance of machine learning models. The standard protocol evaluates various hyperparameter configurations using a resampling estimate of the generalization error to guide optimization and select a final hyperparameter configuration. Without much evidence, paired resampling splits, i.e., either a fixed train-validation split or a fixed cross-validation scheme, are often recommended. We show that, surprisingly, reshuffling the splits for every configuration often improves the final model's generalization performance on unseen data. Our theoretical analysis explains how reshuffling affects the asymptotic behavior of the validation loss surface and provides a bound on the expected regret in the limiting regime. This bound connects the potential benefits of reshuffling to the signal and noise characteristics of the underlying optimization problem. We confirm our theoretical results in a controlled simulation study and demonstrate the practical usefulness of reshuffling in a large-scale, realistic hyperparameter optimization experiment. While reshuffling leads to test performances that are competitive with using fixed splits, it drastically improves results for a single train-validation holdout protocol and can often make holdout become competitive with standard CV while being computationally cheaper.
The complexity of black-box algorithms can lead to various challenges, including the introduction of biases. These biases present immediate risks in the algorithms' application. It was, for instance, shown that neural networks can deduce racial information solely from a patient's X-ray scan, a task beyond the capability of medical experts. If this fact is not known to the medical expert, automatic decision-making based on this algorithm could lead to prescribing a treatment (purely) based on racial information. While current methodologies allow for the ''orthogonalization'' or ''normalization'' of neural networks with respect to such information, existing approaches are grounded in linear models. Our paper advances the discourse by introducing corrections for non-linearities such as ReLU activations. Our approach also encompasses scalar and tensor-valued predictions, facilitating its integration into neural network architectures. Through extensive experiments, we validate our method's effectiveness in safeguarding sensitive data in generalized linear models, normalizing convolutional neural networks for metadata, and rectifying pre-existing embeddings for undesired attributes.
The recently developed Prior-Data Fitted Networks (PFNs) have shown very promising results for applications in low-data regimes. The TabPFN model, a special case of PFNs for tabular data, is able to achieve state-of-the-art performance on a variety of classification tasks while producing posterior predictive distributions in mere seconds by in-context learning without the need for learning parameters or hyperparameter tuning. This makes TabPFN a very attractive option for a wide range of domain applications. However, a major drawback of the method is its lack of interpretability. Therefore, we propose several adaptations of popular interpretability methods that we specifically design for TabPFN. By taking advantage of the unique properties of the model, our adaptations allow for more efficient computations than existing implementations. In particular, we show how in-context learning facilitates the estimation of Shapley values by avoiding approximate retraining and enables the use of Leave-One-Covariate-Out (LOCO) even when working with large-scale Transformers. In addition, we demonstrate how data valuation methods can be used to address scalability challenges of TabPFN.