is Junior Professor at the Working Group Mathematical Data Science and Artificial Intelligence at LMU Munich.
As the array dimension of massive MIMO systems increases to unprecedented levels, two problems occur. First, the spatial stationarity assumption along the antenna elements is no longer valid. Second, the large array size results in an unacceptably high power consumption if high-resolution analog-to-digital converters are used. To address these two challenges, we consider a Bussgang linear minimum mean square error (BLMMSE)-based channel estimator for large scale massive MIMO systems with one-bit quantizers and a spatially non-stationary channel. Whereas other works usually assume that the channel covariance is known at the base station, we consider a plug-in BLMMSE estimator that uses an estimate of the channel covariance and rigorously analyze the distortion produced by using an estimated, rather than the true, covariance. To cope with the spatial non-stationarity, we introduce dithering into the quantized signals and provide a theoretical error analysis. In addition, we propose an angular domain fitting procedure which is based on solving an instance of non-negative least squares. For the multi-user data transmission phase, we further propose a BLMMSE-based receiver to handle one-bit quantized data signals. Our numerical results show that the performance of the proposed BLMMSE channel estimator is very close to the oracle-aided scheme with ideal knowledge of the channel covariance matrix. The BLMMSE receiver outperforms the conventional maximum-ratio-combining and zero-forcing receivers in terms of the resulting ergodic sum rate.
We consider covariance estimation of any subgaussian distribution from finitely many i.i.d. samples that are quantized to one bit of information per entry. Recent work has shown that a reliable estimator can be constructed if uniformly distributed dithers on [−λ,λ] are used in the one-bit quantizer. This estimator enjoys near-minimax optimal, non-asymptotic error estimates in the operator and Frobenius norms if λ is chosen proportional to the largest variance of the distribution. However, this quantity is not known a-priori, and in practice λ needs to be carefully tuned to achieve good performance. In this work we resolve this problem by introducing a tuning-free variant of this estimator, which replaces λ by a data-driven quantity. We prove that this estimator satisfies the same non-asymptotic error estimates - up to small (logarithmic) losses and a slightly worse probability estimate. We also show that by using refined data-driven dithers that vary per entry of each sample, one can construct an estimator satisfying the same estimation error bound as the sample covariance of the samples before quantization – again up logarithmic losses. Our proofs rely on a new version of the Burkholder-Rosenthal inequalities for matrix martingales, which is expected to be of independent interest.
We propose a new algorithm for the problem of recovering data that adheres to multiple, heterogenous low-dimensional structures from linear observations. Focussing on data matrices that are simultaneously row-sparse and low-rank, we propose and analyze an iteratively reweighted least squares (IRLS) algorithm that is able to leverage both structures. In particular, it optimizes a combination of non-convex surrogates for row-sparsity and rank, a balancing of which is built into the algorithm. We prove locally quadratic convergence of the iterates to a simultaneously structured data matrix in a regime of minimal sample complexity (up to constants and a logarithmic factor), which is known to be impossible for a combination of convex surrogates. In experiments, we show that the IRLS method exhibits favorable empirical convergence, identifying simultaneously row-sparse and low-rank matrices from fewer measurements than state-of-the-art methods.
In this work, we analyze the relation between reparametrizations of gradient flow and the induced implicit bias in linear models, which encompass various basic regression tasks. In particular, we aim at understanding the influence of the model parameters - reparametrization, loss, and link function - on the convergence behavior of gradient flow. Our results provide conditions under which the implicit bias can be well-described and convergence of the flow is guaranteed. We furthermore show how to use these insights for designing reparametrization functions that lead to specific implicit biases which are closely connected to ℓp- or trigonometric regularizers.
In this short note, we propose a new method for quantizing the weights of a fully trained neural network. A simple deterministic pre-processing step allows us to quantize network layers via memoryless scalar quantization while preserving the network performance on given training data. On one hand, the computational complexity of this pre-processing slightly exceeds that of state-of-the-art algorithms in the literature. On the other hand, our approach does not require any hyper-parameter tuning and, in contrast to previous methods, allows a plain analysis. We provide rigorous theoretical guarantees in the case of quantizing single network layers and show that the relative error decays with the number of parameters in the network if the training data behaves well, e.g., if it is sampled from suitable random distributions. The developed method also readily allows the quantization of deep networks by consecutive application to single layers.
©all images: LMU | TUM