Home  | Research | Groups | Kilbertus

Research Group Niki Kilbertus


Link to website at TUM PI Matchmaking

Niki Kilbertus

Prof. Dr.

Principal Investigator

Niki Kilbertus

is Assistant Professor of Ethics in Systems Design and Machine Learning at TU Munich.

He and his team investigate the interactions between machine learning algorithms and humans with a focus on ethical consequences and trustworthiness. They currently study identification and estimation of causal effects from observational data in automated decision-making and dynamic environments.

Team members @MCML

PhD Students

Link to website

Sören Becker

Link to website

Cecilia Casolo

Birgit Kühbacher

Birgit Kühbacher

Link to website

Zhufeng Li

Link to website

Jiaqi Lu

Link to website

Georg Manten

Link to website

Kirtan Padh

Link to website

Lars Pennig

Link to website

Nora Schneider

Recent News @MCML

Link to Niki Kilbertus Receives Prestigious ERC Starting Grant

08.09.2025

Niki Kilbertus Receives Prestigious ERC Starting Grant

Award Supports Project “DYNAMICAUS” on Causal Modeling in Complex Systems

Link to From Physics Dreams to Algorithm Discovery - With Niki Kilbertus

13.08.2025

From Physics Dreams to Algorithm Discovery - With Niki Kilbertus

Research Film

Link to MCML at ICML 2025

11.07.2025

MCML at ICML 2025

25 Accepted Papers (20 Main, and 5 Workshops)

Link to MCML at ICLR 2025

22.04.2025

MCML at ICLR 2025

52 Accepted Papers (35 Main, and 17 Workshops)

Publications @MCML

2025


[26]
M. Bahrami • A. Tejada-Lapuerta • S. Becker • F. S. Hashemi G. • F. J. Theis
scConcept: Contrastive pretraining for technology-agnostic single-cell representations beyond reconstruction.
Preprint (Oct. 2025). DOI

[25] A* Conference
J. SchweisthalD. FrauenM. SchröderK. HeßN. KilbertusS. Feuerriegel
Learning Representations of Instruments for Partial Identification of Treatment Effects.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

[24] A* Conference
J. Zausinger • L. Pennig • A. Kozina • S. Sdahl • J. Sikora • A. Dendorfer • T. Kuznetsov • M. Hagog • N. Wiedemann • K. Chlodny • V. Limbach • A. Ketteler • T. Prein • V. M. Singh • M. M. Danziger • J. Born
Regress, Don't Guess -- A Regression-like Loss on Number Tokens for Language Models.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL GitHub

[23]
C. CasoloS. BeckerN. Kilbertus
Identifiability Challenges in Sparse Linear Ordinary Differential Equations.
Preprint (Jun. 2025). arXiv

[22]
G. MantenC. Casolo • S. W. Mogensen • N. Kilbertus
An Asymmetric Independence Model for Causal Discovery on Path Spaces.
CLeaR 2025 - 4th Conference on Causal Learning and Reasoning. Lausanne, Switzerland, May 07-09, 2025. URL

[21] A* Conference
G. MantenC. Casolo • E. Ferrucci • S. Mogensen • C. Salvi • N. Kilbertus
Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes.
ICLR 2025 - 13th International Conference on Learning Representations. Singapore, Apr 24-28, 2025. URL

[20] A* Conference
Z. Li • S. S. Cranganore • N. Youngblut • N. Kilbertus
Whole Genome Transformer for Gene Interaction Effects in Microbiome Habitat Specificity.
AAAI 2025 - 39th Conference on Artificial Intelligence. Philadelphia, PA, USA, Feb 25-Mar 04, 2025. DOI

[19] Top Journal
T. Willem • V. A. Shitov • M. D. Luecken • N. KilbertusS. Bauer • M. Piraud • A. Buyx • F. J. Theis
Biases in machine-learning models of human single-cell data.
Nature Cell Biology. Feb. 2025. DOI

[18] Top Journal
E. AilerC. L. MüllerN. Kilbertus
Instrumental variable estimation for compositional treatments.
Scientific Reports 15.5158. Feb. 2025. DOI

[17]
K. PadhZ. LiC. CasoloN. Kilbertus
Your Assumed DAG is Wrong and Here's How To Deal With It.
Preprint (Feb. 2025). arXiv

2024


[16]
B. Kühbacher • F. Iglesias-Suarez • N. Kilbertus • V. Eyring
Towards Physically Consistent Deep Learning For Climate Model Parameterizations.
ICMLA 2024 - 23rd IEEE International Conference on Machine Learning and Applications. Miami, FL, USA, Dec 18-20, 2024. DOI

[15]
A. White • A. Büttner • M. Gelbrecht • N. Kilbertus • F. Hellmann • N. Boers
Projected Neural Differential Equations for Power Grid Modeling with Constraints.
D3S3 @NeurIPS 2024 - Workshop on Data-driven and Differentiable Simulations, Surrogates, and Solvers at the 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

[14] A* Conference
E. Ailer • N. Dern • J. Hartford • N. Kilbertus
Targeted Sequential Indirect Experiment Design.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL

[13]
T. Schwarz • C. CasoloN. Kilbertus
Uncertainty-Aware Optimal Treatment Selection for Clinical Time Series.
Preprint (Oct. 2024). arXiv

[12]
A. White • A. Büttner • M. Gelbrecht • V. Duruisseaux • N. Kilbertus • F. Hellmann • N. Boers
Projected Neural Differential Equations for Learning Constrained Dynamics.
Preprint (Oct. 2024). arXiv

[11] Top Journal
A. Szałata • K. Hrovatin • S. Becker • A. Tejada-Lapuerta • H. Cui • B. Wang • F. J. Theis
Transformers in single-cell omics: a review and new perspectives.
Nature Methods 21. Aug. 2024. DOI

[10]
F. Quinzan • C. Casolo • K. Muandet • Y. Luo • N. Kilbertus
Learning Counterfactually Invariant Predictors.
Transactions on Machine Learning Research. Jul. 2024. URL

[9]
I. Obadic • A. Levering • L. Pennig • D. Oliveira • D. Marcos • X. Zhu
Contrastive Pretraining for Visual Concept Explanations of Socioeconomic Outcomes.
Workshop @CVPR 2024 - Workshop at the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA, Jun 17-21, 2024. DOI

[8] A* Conference
S. d'Ascoli • S. Becker • P. Schwaller • A. Mathis • N. Kilbertus
ODEFormer: Symbolic Regression of Dynamical Systems with Transformers.
ICLR 2024 - 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL GitHub

[7] A* Conference
L. Eyring • D. Klein • T. Uscidda • G. Palla • N. Kilbertus • Z. Akata • F. J. Theis
Unbalancedness in Neural Monge Maps Improves Unpaired Domain Translation.
ICLR 2024 - 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL

[6]
Z. Li • S. S. Cranganore • N. Youngblut • N. Kilbertus
Whole Genome Transformers for Gene Interaction Effects in Microbiome Habitat Prediction.
MLGenX @ICLR 2024 - Workshop Machine Learning for Genomics Explorations at the 12th International Conference on Learning Representations. Vienna, Austria, May 07-11, 2024. URL

[5] Top Journal
S. FeuerriegelD. FrauenV. MelnychukJ. SchweisthalK. Heß • A. Curth • S. BauerN. Kilbertus • I. S. Kohane • M. van der Schaar
Causal machine learning for predicting treatment outcomes.
Nature Medicine 30. Apr. 2024. DOI

2023


[4]
E. Thelisson • G. Mika • Q. Schneiter • K. Padh • H. Verma
Toward Responsible AI Use: Considerations for Sustainability Impact Assessment.
Preprint (Dec. 2023). arXiv

2022


[3] A* Conference
H. Aliee • T. Richter • M. Solonin • I. Ibarra • F. J. TheisN. Kilbertus
Sparsity in Continuous-Depth Neural Networks.
NeurIPS 2022 - 36th Conference on Neural Information Processing Systems. New Orleans, LA, USA, Nov 28-Dec 09, 2022. URL

[2] A* Conference
L. Hetzel • S. Boehm • N. KilbertusS. Günnemann • M. Lotfollahi • F. J. Theis
Predicting Cellular Responses to Novel Drug Perturbations at a Single-Cell Resolution.
NeurIPS 2022 - 36th Conference on Neural Information Processing Systems. New Orleans, LA, USA, Nov 28-Dec 09, 2022. URL

[1]
L. Hetzel • S. Boehm • N. KilbertusS. Günnemann • M. Lotfollahi • F. J. Theis
Predicting single-cell perturbation responses for unseen drugs.
MLDD @ICML 2022 - Workshop on Machine Learning for Drug Discovery at the 39th International Conference on Machine Learning. Baltimore, MD, USA, Jul 17-23, 2022. URL