leads the group for Clinical Data Science at the Department of Radiology at LMU Munich.
His team employs advanced statistics, machine learning and computer vision techniques in the context of clinical radiology to enable fast and precise AI-supported diagnosis and prognostication. The research areas focus on applying computer vision techniques in radiology for diagnosis and prognosis, as well as using biostatistical methods to rigorously analyze clinical data. Additionally, the work includes leveraging large language models for clinical text analysis and developing multimodal deep learning models that integrate diverse data types, such as imaging and text, to improve AI model accuracy and applicability.
While recent advances in large-scale foundational models show promising results, their application to the medical domain has not yet been explored in detail. In this paper, we progress into the realms of large-scale modeling in medical synthesis by proposing Cheff - a foundational cascaded latent diffusion model, which generates highly-realistic chest radiographs providing state-of-the-art quality on a 1-megapixel scale. We further propose MaCheX, which is a unified interface for public chest datasets and forms the largest open collection of chest X-rays up to date. With Cheff conditioned on radiological reports, we further guide the synthesis process over text prompts and unveil the research area of report-to-chest-X-ray generation.