Home  | Research | Groups | Ingrisch

Research Group Michael Ingrisch


Link to website at LMU PI Matchmaking

Michael Ingrisch

Prof. Dr.

Principal Investigator

Michael Ingrisch

leads the group for Clinical Data Science at the Department of Radiology at LMU Munich.

His team employs advanced statistics, machine learning and computer vision techniques in the context of clinical radiology to enable fast and precise AI-supported diagnosis and prognostication. The research areas focus on applying computer vision techniques in radiology for diagnosis and prognosis, as well as using biostatistical methods to rigorously analyze clinical data. Additionally, the work includes leveraging large language models for clinical text analysis and developing multimodal deep learning models that integrate diverse data types, such as imaging and text, to improve AI model accuracy and applicability.

Team members @MCML

PostDocs

Link to website

Boj Friedrich Hoppe

Dr.

Link to website

Katharina Jeblick

Dr.

Link to website

Andreas Mittermeier

Dr.

Link to website

Balthasar Schachtner

Dr.

Link to website

Philipp Wesp

Dr.

PhD Students

Link to website

Jakob Dexl

Link to website

Theresa Stüber

Link to website

Johanna Topalis

Recent News @MCML

Link to When Clinical Expertise Meets AI Innovation – With Michael Ingrisch

25.06.2025

When Clinical Expertise Meets AI Innovation – With Michael Ingrisch

Research Film

Link to MCML at PAKDD 2025

08.06.2025

MCML at PAKDD 2025

Two Accepted Papers

Link to ChatGPT in Radiology: Making Medical Reports Patient-Friendly?

27.02.2025

ChatGPT in Radiology: Making Medical Reports Patient-Friendly?

MCML Research Insight - With Katharina Jeblick, Balthasar Schachtner, Jakob Dexl, Andreas Mittermeier, Anna Theresa Stüber and Philipp Wesp and MCML PI Michael Ingrisch

Link to MCML Researchers in Highly-Ranked Journals

02.01.2025

MCML Researchers in Highly-Ranked Journals

130 Papers in 2025 Highlight Scientific Impact

Publications @MCML

2025


[35] Top Journal
S. Schluessel • B. Mueller • M. Drey • O. Tausendfreund • M. Rippl • L. Deissler • S. Martini • R. Schmidmaier • S. Stoecklein • M. Ingrisch
3D deep learning-based muscle volume quantification from thoracic CT as a surrogate for DXA-Derived appendicular muscle mass in older adults.
Aging Clinical and Experimental Research 37.296. Oct. 2025. DOI

[34]
P. Spitzer • D. Hendriks • J. Rudolph • S. Schläger • J. Ricke • N. Kühl • B. F. HoppeS. Feuerriegel
The effect of medical explanations from large language models on diagnostic accuracy in radiology.
Preprint (Aug. 2025). DOI

[33] A Conference
T. WeberM. IngrischB. BischlD. Rügamer
Preventing Sensitive Information Leakage via Post-hoc Orthogonalization with Application to Chest Radiograph Embeddings.
PAKDD 2025 - 29th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Sydney, Australia, Jun 10-13, 2025. DOI GitHub

[32]
Y. Lemaréchal • G. Couture • F. Pelletier • R. Lefol • P.-L. Asselin • S. Ouellet • J. Bernard • L. Ebrahimpour • V. S. K. Manem • J. TopalisB. Schachtner • S. Jodogne • P. Joubert • K. JeblickM. Ingrisch • P. Després
PARADIM: A Platform to Support Research at the Interface of Data Science and Medical Imaging.
Journal of Imaging Informatics in Medicine. Jun. 2025. DOI

[31]
J. Marcon • P. Weinhold • M. Rzany • M. P. Fabritius • M. Winkelmann • A. Buchner • L. Eismann • J.-F. Jokisch • J. Casuscelli • G. B. Schulz • T. Knösel • M. Ingrisch • J. Ricke • C. G. Stief • S. Rodler • P. M. Kazmierczak
Radiomics-based differentiation of upper urinary tract urothelial and renal cell carcinoma in preoperative computed tomography datasets.
BMC Medical Imaging 25.196. May. 2025. DOI

[30] Top Journal
L. Nas • B. F. HoppeA. T. Stüber • S. Grosu • N. Fink • A. von Fragstein • J. Rudolph • J. Ricke • B. O. Sabel
Optimizing lower extremity CT angiography: A prospective study of individualized vs. fixed post-trigger delays in bolus tracking.
European Journal of Radiology 185.112009. Apr. 2025. DOI

[29]
P. Spitzer • D. Hendriks • J. Rudolph • S. Schläger • J. Ricke • N. Kühl • B. F. HoppeS. Feuerriegel
The effect of medical explanations from large language models on diagnostic decisions in radiology.
Preprint (Mar. 2025). DOI

[28]
K. Geißler • T. L. Koller • A. Ambroladze • E. M. Fallenberg • M. Ingrisch • H. K. Hahn
Breast cancer risk prediction using background parenchymal enhancement, radiomics, and symmetry features on MRI.
SPIE 2025 - SPIE Medical Imaging: Computer-Aided Diagnosis. San Diego, CA, USA, Feb 16-21, 2025. DOI

[27]
T. L. Koller • K. Geißler • A. Ambroladze • E. M. Fallenberg • M. Ingrisch • H. Amer • P. Seeböck • G. Langs • H. K. Hahn
Pitfalls with anomaly detection for breast cancer risk prediction.
SPIE 2025 - SPIE Medical Imaging: Computer-Aided Diagnosis. San Diego, CA, USA, Feb 16-21, 2025. DOI

[26] Top Journal
A. T. Stüber • M. M. Heimer • J. Ta • M. P. Fabritius • B. F. Hoppe • G. Sheikh • M. Brendel • L. Unterrainer • P. Jurmeister • A. Tufman • J. Ricke • C. C. Cyran • M. Ingrisch
Replication study of PD-L1 status prediction in NSCLC using PET/CT radiomics.
European Journal of Radiology 183.111825. Feb. 2025. DOI

[25] Top Journal
S. Grosu • M. P. Fabritius • M. Winkelmann • D. Puhr-Westerheide • M. Ingenerf • S. Maurus • A. Graser • C. Schulz • T. Knösel • C. C. Cyran • J. Ricke • P. M. Kazmierczak • M. IngrischP. Wesp
Effect of artificial intelligence-aided differentiation of adenomatous and non-adenomatous colorectal polyps at CT colonography on radiologists’ therapy management.
European Radiology Early Access. Jan. 2025. DOI

[24] Top Journal
N. Heldring • A.-R. Rezaie • A. Larsson • R. Gahn • B. Zilg • S. Camilleri • A. Saade • P. Wesp • E. Palm • O. Kvist
A probability model for estimating age in young individuals relative to key legal thresholds: 15, 18 or 21-year.
International Journal of Legal Medicine 139.1. Jan. 2025. DOI

[23]
T. WeberJ. DexlD. RügamerM. Ingrisch
Post-Training Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition.
Radiology: Artificial Intelligence 7.2. Jan. 2025. DOI

2024


[22] Top Journal
J. Rudolph • J. Rueckel • J. Döpfert • W. X. Ling • J. Opalka • C. Brem • N. Hesse • M. Ingenerf • V. Koliogiannis • O. Solyanik • B. F. Hoppe • H. Zimmermann • W. Flatz • R. Forbrig • M. Patzig • B.-S. Rauchmann • R. Perneczky • O. Peters • J. Priller • A. Schneider • K. Fliessbach • A. Hermann • J. Wiltfang • F. Jessen • E. Düzel • K. Buerger • S. Teipel • C. Laske • M. Synofzik • A. Spottke • M. Ewers • P. Dechent • J.-D. Haynes • J. Levin • T. Liebig • J. Ricke • M. Ingrisch • S. Stoecklein
Artificial intelligence–based rapid brain volumetry substantially improves differential diagnosis in dementia.
Alzheimer’s and Dementia 16.e70037. Oct. 2024. DOI

[21]
M. M. Heimer • Y. Dikhtyar • B. F. Hoppe • F. L. Herr • A. T. Stüber • T. Burkard • E. Zöller • M. P. Fabritius • L. Unterrainer • L. Adams • A. Thurner • D. Kaufmann • T. Trzaska • M. Kopp • O. Hamer • K. Maurer • I. Ristow • M. S. May • A. Tufman • J. Spiro • M. Brendel • M. Ingrisch • J. Ricke • C. C. Cyran
Software-assisted structured reporting and semi-automated TNM classification for NSCLC staging in a multicenter proof of concept study.
Insights into Imaging 15.258. Oct. 2024. DOI

[20]
S. Gatidis • M. Früh • M. P. Fabritius • S. Gu • K. Nikolaou • C. L. Fougère • J. Ye • J. He • Y. Peng • L. Bi • J. Ma • B. Wang • J. Zhang • Y. Huang • L. Heiliger • Z. Marinov • R. Stiefelhagen • J. Egger • J. Kleesiek • L. Sibille • L. Xiang • S. Bendazzoli • M. Astaraki • M. Ingrisch • C. C. Cyran • T. Küstner
Results from the autoPET challenge on fully automated lesion segmentation in oncologic PET/CT imaging.
Nature Machine Intelligence 6. Oct. 2024. DOI

[19]
A. MittermeierM. AßenmacherB. Schachtner • S. Grosu • V. Dakovic • V. Kandratovich • B. Sabel • M. Ingrisch
Automatische ICD-10-Codierung.
Die Radiologie 64. Aug. 2024. DOI

[18] Top Journal
R. Klaar • M. Rabe • A. T. Stüber • S. Hering • S. Corradini • C. Eze • S. Marschner • C. Belka • G. Landry • J. Dinkel • C. Kurz
MRI-based ventilation and perfusion imaging to predict radiation-induced pneumonitis in lung tumor patients at a 0.35T MR-Linac.
Radiotherapy and Oncology. Aug. 2024. DOI

[17]
T. Löhr • M. IngrischE. Hüllermeier
Towards Aleatoric and Epistemic Uncertainty in Medical Image Classification.
AIME 2024 - 22nd International Conference on Artificial Intelligence in Medicine. Salt Lake City, UT, USA, Jul 09-12, 2024. DOI

[16]
R. Klaar • M. Rabe • A. T. Stüber • S. Corradini • C. Eze • C. Belka • G. Landry • C. Kurz • J. Dinkel
Using Ventilation and Perfusion MRI at a 0.35 T MR-Linac to Predict Radiation-Induced Pneumonitis in Lung Cancer Patients.
ISMRM 2024 - International Society for Magnetic Resonance in Medicine Annual Meeting. Singapore, May 04-09, 2024. URL

[15] Top Journal
K. JeblickB. SchachtnerJ. DexlA. MittermeierA. T. StüberJ. TopalisT. WeberP. Wesp • B. O. Sabel • J. Ricke • M. Ingrisch
ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports.
European Radiology 34. May. 2024. DOI


[13]
A. Portafaix • P. Reidler • B. Sabel • J. DexlK. JeblickA. MittermeierM. Ingrisch • T. Fevens
Computer vision-based guidance tool for correct radiographic hand positioning.
SPIE 2024 - SPIE Medical Imaging: Image Perception, Observer Performance, and Technology Assessment. San Diego, CA, USA, Feb 18-22, 2024. DOI

[12]
K. Geißler • A. Ambroladze • N. Papenberg • T. L. Koller • H. Amer • E. M. Fallenberg • S. A. Kurt • M. Ingrisch • H. K. Hahn
Deformable current-prior registration of DCE breast MR images on multi-site data.
SPIE 2024 - SPIE Medical Imaging: Image Processing. San Diego, CA, USA, Feb 18-22, 2024. DOI

[11] A Conference
T. WeberM. IngrischB. BischlD. Rügamer
Constrained Probabilistic Mask Learning for Task-specific Undersampled MRI Reconstruction.
WACV 2024 - IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, Hawaii, Jan 04-08, 2024. DOI

[10] Top Journal
P. WespB. SchachtnerK. JeblickJ. Topalis • M. Weber • F. Fischer • R. Penning • J. Ricke • M. Ingrisch • B. O. Sabel
Radiological age assessment based on clavicle ossification in CT: enhanced accuracy through deep learning.
International Journal of Legal Medicine. Jan. 2024. DOI

2023


[9] Top Journal
A. T. Stüber • S. Coors • B. SchachtnerT. WeberD. RügamerA. BenderA. Mittermeier • O. Öcal • M. Seidensticker • J. Ricke • B. BischlM. Ingrisch
A comprehensive machine learning benchmark study for radiomics-based survival analysis of CT imaging data in patients with hepatic metastases of CRC.
Investigative Radiology 58.12. Dec. 2023. DOI

[8]
T. WeberM. IngrischB. BischlD. Rügamer
Post-hoc Orthogonalization for Mitigation of Protected Feature Bias in CXR Embeddings.
Preprint (Nov. 2023). arXiv

[7]
A. T. Stüber • S. Coors • M. Ingrisch
Revitalize the Potential of Radiomics: Interpretation and Feature Stability in Medical Imaging Analyses through Groupwise Feature Importance.
LB-D-DC 2023 @xAI 2023 - Late-breaking Work, Demos and Doctoral Consortium at the 1st World Conference on eXplainable Artificial Intelligence. Lisbon, Portugal, Jul 26-28, 2023. PDF

[6] A Conference
T. WeberM. IngrischB. BischlD. Rügamer
Cascaded Latent Diffusion Models for High-Resolution Chest X-ray Synthesis.
PAKDD 2023 - 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Osaka, Japan, May 25-28, 2023. DOI

[5]
A. Mittermeier
Robust evaluation of contrast-enhanced imaging for perfusion quantification.
Dissertation LMU München. May. 2023. DOI

2022


[4]
T. WeberM. IngrischB. BischlD. Rügamer
Implicit Embeddings via GAN Inversion for High Resolution Chest Radiographs.
MAD @MICCAI 2022 - 1st Workshop on Medical Applications with Disentanglements at the 25th International Conference on Medical Image Computing and Computer Assisted Intervention. Singapore, Sep 18-22, 2022. DOI

2021


[3]
T. WeberM. Ingrisch • M. Fabritius • B. BischlD. Rügamer
Survival-oriented embeddings for improving accessibility to complex data structures.
Bridging the Gap: from ML Research to Clinical Practice @NeurIPS 2021 - Workshop on Bridging the Gap: from Machine Learning Research to Clinical Practice at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. arXiv

[2]
T. WeberM. IngrischB. BischlD. Rügamer
Towards modelling hazard factors in unstructured data spaces using gradient-based latent interpolation.
Deep Generative Models and Downstream Applications @NeurIPS 2021 - Workshop on Deep Generative Models and Downstream Applications at the 35th Conference on Neural Information Processing Systems. Virtual, Dec 06-14, 2021. PDF

[1] Top Journal
M. P. Fabritius • M. Seidensticker • J. Rueckel • C. Heinze • M. Pech • K. J. Paprottka • P. M. Paprottka • J. TopalisA. Bender • J. Ricke • A. MittermeierM. Ingrisch
Bi-Centric Independent Validation of Outcome Prediction after Radioembolization of Primary and Secondary Liver Cancer.
Journal of Clinical Medicine 10.16. Aug. 2021. DOI