Home  | Research | Groups | Heckel

Research Group Reinhard Heckel


Link to website at TUM PI Matchmaking

Reinhard Heckel

Prof. Dr.

Principal Investigator

Reinhard Heckel

is Professor for Machine Learning at TU Munich.

His research is centered on machine learning and information processing. He focuses on developing algorithms and theoretical foundations for deep learning, particularly in medical imaging application, and on establishing mathematical and empirical underpinnings for machine learning. Additionally, he works on DNA data storage and the utilization of DNA as a digital information technology.

Team members @MCML

PhD Students

Link to website

Florian Fürnrohr

Tobit Klug

Tobit Klug

Link to website

Youssef Mansour

Link to website

Franziska Weindel

Recent News @MCML

Link to How Neural Networks Are Changing Medical Imaging – With Reinhard Heckel

07.07.2025

How Neural Networks Are Changing Medical Imaging – With Reinhard Heckel

Research Film

Link to Reinhard Heckel on Bayerischer Rundfunk

14.02.2025

Reinhard Heckel on Bayerischer Rundfunk

OpenAI’s New Office in Munich

Link to Reinhard Heckel Featured on Sat1 Newstime

31.01.2025

DeepSeek's Cost-Effective Model Development

Link to MCML at ECCV 2024

27.09.2024

MCML at ECCV 2024

29 Accepted Papers (23 Main, and 6 Workshops)

Publications @MCML

2025


[10] A* Conference
Y. MansourR. Heckel
Measuring Fingerprints of Web-filtered Text Datasets and Fingerprint Propagation Through Training.
NeurIPS 2025 - 39th Conference on Neural Information Processing Systems. San Diego, CA, USA, Nov 30-Dec 07, 2025. Spotlight Presentation. To be published. Preprint available. URL

[9]
S. Bamberger • R. HeckelF. Krahmer
Approximating Positive Homogeneous Functions with Scale Invariant Neural Networks.
Journal of Approximation Theory 311.106177. Nov. 2025. DOI

[8]
J. Streit • F. WeindelR. Heckel
Transformer-Based Decoding in Concatenated Coding Schemes Under Synchronization Errors.
ISIT 2025 - IEEE International Symposium on Information Theory. Ann Arbor, MI, USA, Jul 22-27, 2025. DOI

[7]
F. Weindel • M. Girsch • R. Heckel
Trace Reconstruction with Language Models.
Preprint (Jul. 2025). arXiv

[6]
E. Guha • R. Marten • S. Keh • N. Raoof • G. Smyrnis • H. Bansal • M. Nezhurina • J. Mercat • T. Vu • Z. Sprague • A. Suvarna • B. Feuer • L. Chen • Z. Khan • E. Frankel • S. Grover • C. Choi • N. Muennighoff • S. Su • W. Zhao • J. Yang • S. Pimpalgaonkar • K. Sharma • C. C.-J. Ji • Y. Deng • S. Pratt • V. Ramanujan • J. Saad-Falcon • J. Li • A. Dave • A. Albalak • K. Arora • B. Wulfe • C. Hegde • G. Durrett • S. Oh • M. Bansal • S. Gabriel • A. Grover • K.-W. Chang • V. Shankar • A. Gokaslan • M. A. Merrill • T. Hashimoto • Y. Choi • J. Jitsev • R. Heckel • M. Sathiamoorthy • A. G. Dimakis • L. Schmidt
OpenThoughts: Data Recipes for Reasoning Models.
Preprint (Jun. 2025). arXiv URL

[5]
K. Wang • T. Klug • S. Ruschke • J. Kirschke • R. Heckel
Reliable Evaluation of MRI Motion Correction: Dataset and Insights.
Preprint (Jun. 2025). arXiv

[4]
F. WeindelR. Heckel
LLM-Guided Search for Deletion-Correcting Codes.
Preprint (Apr. 2025). arXiv

2024


[3] A* Conference
Y. Mansour • X. Zhong • S. Caglar • R. Heckel
TTT-MIM: Test-Time Training with Masked Image Modeling for Denoising Distribution Shifts.
ECCV 2024 - 18th European Conference on Computer Vision. Milano, Italy, Sep 29-Oct 04, 2024. DOI GitHub

[2]

2023


[1] A* Conference
Y. MansourR. Heckel
Zero-Shot Noise2Noise: Efficient Image Denoising without any Data.
CVPR 2023 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada, Jun 18-23, 2023. DOI