07.07.2025
How Neural Networks Are Changing Medical Imaging – With Reinhard Heckel
Research Film
Clear imaging is essential for accurate diagnosis — but when it comes to the heart, motion makes it one of the most difficult organs to capture in high resolution. Traditional reconstruction methods often struggle to deliver the detail clinicians need.
«Deep neural networks can improve the clarity and diagnostic value by giving much sharper and higher resolution images from measurements where classical methods just don’t do as well.»
Reinhard Heckel
MCML PI
Reinhard Heckel, Professor of Machine Learning at TUM and MCML PI, is using deep neural networks to change that. His team is developing methods that reconstruct sharper, more detailed images from limited or noisy measurements — even when the subject is moving.
«The data is really what makes the difference between a well-performing method that is robust and reliable, and a method that is just going to work on a handful of patients.»
Reinhard Heckel
MCML PI
A key focus of his research is data: how to source it, how to ensure it’s diverse, and how to train robust models that generalize across patient populations.
This work is paving the way for more accurate imaging tools that can help detect pathologies that might otherwise go unnoticed.
This video is part of our MCML spotlight series on researchers driving real-world impact with AI.
©MCML
The film was produced and edited by Nicole Huminski and Nikolai Huber.
#blog #research #heckel
Related
13.11.2025
Anne-Laure Boulesteix Among the World’s Most Cited Researchers
MCML PI Anne‑Laure Boulesteix named Highly Cited Researcher 2025 for cross-field work, among 17 LMU scholars recognized globally.
13.11.2025
Björn Ommer Featured in Frankfurter Rundschau
Björn Ommer highlights how Google’s new AI search mode impacts publishers, content visibility, and the diversity of online information.
13.11.2025
Fabian Theis Among the World’s Most Cited Researchers
Fabian Theis is named a Highly Cited Researcher 2025 for his work in mathematical modeling of biological systems.
13.11.2025
Explaining AI Decisions: Shapley Values Enable Smart Exosuits
AI meets wearable robotics: MCML and Harvard researchers make exosuits smarter and safer with explainable optimization, presented at ECML-PKDD 2025.