Home | Research | Groups | Mathias Drton

Research Group Mathias Drton

Link to Mathias Drton

Mathias Drton

Prof. Dr.

Principal Investigator

Mathematical Statistics

Mathias Drton

is Professor of Mathematical Statistics at TU Munich.

He works on methods and theory in the field of statistics. His main interest is the analysis of complex multivariate data. The main focus lies on graphical models, which capture fine causal relationships and find manifold applications in modern data-driven science. The aim of the research is, amongst others, to clarify by means of algebraic and probability theory under which circumstances data allow conclusions about causal relationships and to develop efficient methods for their estimation.

Team members @MCML

Publications @MCML

2024


[14]
T. Boege, M. Drton, B. Hollering, S. Lumpp, P. Misra and D. Schkoda.
Conditional Independence in Stationary Diffusions.
Preprint (Aug. 2024). arXiv
Abstract

Stationary distributions of multivariate diffusion processes have recently been proposed as probabilistic models of causal systems in statistics and machine learning. Motivated by these developments, we study stationary multivariate diffusion processes with a sparsely structured drift. Our main result gives a characterization of the conditional independence relations that hold in a stationary distribution. The result draws on a graphical representation of the drift structure and pertains to conditional independence relations that hold generally as a consequence of the drift’s sparsity pattern.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics


[13]
Y. Liang, O. Zadorozhnyi and M. Drton.
Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic Graphical Models.
Preprint (Aug. 2024). arXiv
Abstract

Causal discovery amounts to learning a directed acyclic graph (DAG) that encodes a causal model. This model selection problem can be challenging due to its large combinatorial search space, particularly when dealing with non-parametric causal models. Recent research has sought to bypass the combinatorial search by reformulating causal discovery as a continuous optimization problem, employing constraints that ensure the acyclicity of the graph. In non-parametric settings, existing approaches typically rely on finite-dimensional approximations of the relationships between nodes, resulting in a score-based continuous optimization problem with a smooth acyclicity constraint. In this work, we develop an alternative approximation method by utilizing reproducing kernel Hilbert spaces (RKHS) and applying general sparsity-inducing regularization terms based on partial derivatives. Within this framework, we introduce an extended RKHS representer theorem. To enforce acyclicity, we advocate the log-determinant formulation of the acyclicity constraint and show its stability. Finally, we assess the performance of our proposed RKHS-DAGMA procedure through simulations and illustrative data analyses.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics


[12]
D. Schkoda, E. Robeva and M. Drton.
Causal Discovery of Linear Non-Gaussian Causal Models with Unobserved Confounding.
Preprint (Aug. 2024). arXiv
Abstract

We consider linear non-Gaussian structural equation models that involve latent confounding. In this setting, the causal structure is identifiable, but, in general, it is not possible to identify the specific causal effects. Instead, a finite number of different causal effects result in the same observational distribution. Most existing algorithms for identifying these causal effects use overcomplete independent component analysis (ICA), which often suffers from convergence to local optima. Furthermore, the number of latent variables must be known a priori. To address these issues, we propose an algorithm that operates recursively rather than using overcomplete ICA. The algorithm first infers a source, estimates the effect of the source and its latent parents on their descendants, and then eliminates their influence from the data. For both source identification and effect size estimation, we use rank conditions on matrices formed from higher-order cumulants. We prove asymptotic correctness under the mild assumption that locally, the number of latent variables never exceeds the number of observed variables. Simulation studies demonstrate that our method achieves comparable performance to overcomplete ICA even though it does not know the number of latents in advance.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics


[11]
D. Strieder and M. Drton.
Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity.
Preprint (Aug. 2024). arXiv
Abstract

A fundamental challenge of scientific research is inferring causal relations based on observed data. One commonly used approach involves utilizing structural causal models that postulate noisy functional relations among interacting variables. A directed graph naturally represents these models and reflects the underlying causal structure. However, classical identifiability results suggest that, without conducting additional experiments, this causal graph can only be identified up to a Markov equivalence class of indistinguishable models. Recent research has shown that focusing on linear relations with equal error variances can enable the identification of the causal structure from mere observational data. Nonetheless, practitioners are often primarily interested in the effects of specific interventions, rendering the complete identification of the causal structure unnecessary. In this work, we investigate the extent to which less restrictive assumptions of partial homoscedasticity are sufficient for identifying the causal effects of interest. Furthermore, we construct mathematically rigorous confidence regions for total causal effects under structure uncertainty and explore the performance gain of relying on stricter error assumptions in a simulation study.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics


[10]
D. Tramontano, Y. Kivva, S. Salehkaleybar, M. Drton and N. Kiyavash.
Causal Effect Identification in LiNGAM Models with Latent Confounders.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL
Abstract

We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance. Regularization is key in deep learning, especially when training complex models on relatively small datasets. In order to understand inner workings of neural networks, attribution methods such as Layer-wise Relevance Propagation (LRP) have been extensively studied, particularly for interpreting the relevance of input features. We introduce Challenger, a module that leverages the explainable power of attribution maps in order to manipulate particularly relevant input patterns. Therefore, exposing and subsequently resolving regions of ambiguity towards separating classes on the ground-truth data manifold, an issue that arises particularly when training models on rather small datasets. Our Challenger module increases model performance through building more diverse filters within the network and can be applied to any input data domain. We demonstrate that our approach results in substantially better classification as well as calibration performance on datasets with only a few samples up to datasets with thousands of samples. In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics


[9]
P. Dettling, M. Drton and M. Kolar.
On the Lasso for Graphical Continuous Lyapunov Models.
CLeaR 2024 - 3rd Conference on Causal Learning and Reasoning. Los Angeles, CA, USA, Apr 01-03, 2024. URL
Abstract

Graphical continuous Lyapunov models offer a new perspective on modeling causally interpretable dependence structure in multivariate data by treating each independent observation as a one-time cross-sectional snapshot of a temporal process. Specifically, the models assume that the observations are cross-sections of independent multivariate Ornstein-Uhlenbeck processes in equilibrium. The Gaussian equilibrium exists under a stability assumption on the drift matrix, and the equilibrium covariance matrix is determined by the continuous Lyapunov equation. Each graphical continuous Lyapunov model assumes the drift matrix to be sparse, with a support determined by a directed graph. A natural approach to model selection in this setting is to use an ℓ1-regularization technique that, based on a given sample covariance matrix, seeks to find a sparse approximate solution to the Lyapunov equation. We study the model selection properties of the resulting lasso technique to arrive at a consistency result. Our detailed analysis reveals that the involved irrepresentability condition is surprisingly difficult to satisfy. While this may prevent asymptotic consistency in model selection, our numerical experiments indicate that even if the theoretical requirements for consistency are not met, the lasso approach is able to recover relevant structure of the drift matrix and is robust to aspects of model misspecification.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics


[8]
K. Göbler, T. Windisch, M. Drton, T. Pychynski, M. Roth and S. Sonntag.
causalAssembly: Generating Realistic Production Data for Benchmarking Causal Discovery.
CLeaR 2024 - 3rd Conference on Causal Learning and Reasoning. Los Angeles, CA, USA, Apr 01-03, 2024. URL
Abstract

Algorithms for causal discovery have recently undergone rapid advances and increasingly draw on flexible nonparametric methods to process complex data. With these advances comes a need for adequate empirical validation of the causal relationships learned by different algorithms. However, for most real and complex data sources true causal relations remain unknown. This issue is further compounded by privacy concerns surrounding the release of suitable high-quality data. To tackle these challenges, we introduce causalAssembly, a semisynthetic data generator designed to facilitate the benchmarking of causal discovery methods. The tool is built using a complex real-world dataset comprised of measurements collected along an assembly line in a manufacturing setting. For these measurements, we establish a partial set of ground truth causal relationships through a detailed study of the physics underlying the processes carried out in the assembly line. The partial ground truth is sufficiently informative to allow for estimation of a full causal graph by mere nonparametric regression. To overcome potential confounding and privacy concerns, we use distributional random forests to estimate and represent conditional distributions implied by the ground truth causal graph. These conditionals are combined into a joint distribution that strictly adheres to a causal model over the observed variables. Sampling from this distribution, causalAssembly generates data that are guaranteed to be Markovian with respect to the ground truth. Using our tool, we showcase how to benchmark several well-known causal discovery algorithms.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics


[7]
D. Strieder and M. Drton.
Dual Likelihood for Causal Inference under Structure Uncertainty.
CLeaR 2024 - 3rd Conference on Causal Learning and Reasoning. Los Angeles, CA, USA, Apr 01-03, 2024. URL
Abstract

Knowledge of the underlying causal relations is essential for inferring the effect of interventions in complex systems. In a widely studied approach, structural causal models postulate noisy functional relations among interacting variables, where the underlying causal structure is then naturally represented by a directed graph whose edges indicate direct causal dependencies. In the typical application, this underlying causal structure must be learned from data, and thus, the remaining structure uncertainty needs to be incorporated into causal inference in order to draw reliable conclusions. In recent work, test inversions provide an ansatz to account for this data-driven model choice and, therefore, combine structure learning with causal inference. In this article, we propose the use of dual likelihood to greatly simplify the treatment of the involved testing problem. Indeed, dual likelihood leads to a closed-form solution for constructing confidence regions for total causal effects that rigorously capture both sources of uncertainty: causal structure and numerical size of nonzero effects. The proposed confidence regions can be computed with a bottom-up procedure starting from sink nodes. To render the causal structure identifiable, we develop our ideas in the context of linear causal relations with equal error variances.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics


[6]
M. Drton, A. Grosdos, I. Portakal and N. Sturma.
Algebraic Sparse Factor Analysis.
Preprint (Feb. 2024). arXiv
Abstract

Factor analysis is a statistical technique that explains correlations among observed random variables with the help of a smaller number of unobserved factors. In traditional full factor analysis, each observed variable is influenced by every factor. However, many applications exhibit interesting sparsity patterns, that is, each observed variable only depends on a subset of the factors. In this paper, we study such sparse factor analysis models from an algebro-geometric perspective. Under mild conditions on the sparsity pattern, we examine the dimension of the set of covariance matrices that corresponds to a given model. Moreover, we study algebraic relations among the covariances in sparse two-factor models. In particular, we identify cases in which a Gröbner basis for these relations can be derived via a 2-delightful term order and joins of toric edge ideals.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics


2023


[5]
N. Sturma, C. Squires, M. Drton and C. Uhler.
Unpaired Multi-Domain Causal Representation Learning.
NeurIPS 2023 - 37th Conference on Neural Information Processing Systems. New Orleans, LA, USA, Dec 10-16, 2023. URL
Abstract

The goal of causal representation learning is to find a representation of data that consists of causally related latent variables. We consider a setup where one has access to data from multiple domains that potentially share a causal representation. Crucially, observations in different domains are assumed to be unpaired, that is, we only observe the marginal distribution in each domain but not their joint distribution. In this paper, we give sufficient conditions for identifiability of the joint distribution and the shared causal graph in a linear setup. Identifiability holds if we can uniquely recover the joint distribution and the shared causal representation from the marginal distributions in each domain. We transform our results into a practical method to recover the shared latent causal graph.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics


[4]
D. Strieder and M. Drton.
Confidence in causal inference under structure uncertainty in linear causal models with equal variances.
Journal of Causal Inference 11.1 (Dec. 2023). DOI
Abstract

Inferring the effect of interventions within complex systems is a fundamental problem of statistics. A widely studied approach uses structural causal models that postulate noisy functional relations among a set of interacting variables. The underlying causal structure is then naturally represented by a directed graph whose edges indicate direct causal dependencies. In a recent line of work, additional assumptions on the causal models have been shown to render this causal graph identifiable from observational data alone. One example is the assumption of linear causal relations with equal error variances that we will take up in this work. When the graph structure is known, classical methods may be used for calculating estimates and confidence intervals for causal-effects. However, in many applications, expert knowledge that provides an a priori valid causal structure is not available. Lacking alternatives, a commonly used two-step approach first learns a graph and then treats the graph as known in inference. This, however, yields confidence intervals that are overly optimistic and fail to account for the data-driven model choice. We argue that to draw reliable conclusions, it is necessary to incorporate the remaining uncertainty about the underlying causal structure in confidence statements about causal-effects. To address this issue, we present a framework based on test inversion that allows us to give confidence regions for total causal-effects that capture both sources of uncertainty: causal structure and numerical size of non-zero effects.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics


[3]
G. Keropyan, D. Strieder and M. Drton.
Rank-Based Causal Discovery for Post-Nonlinear Models.
AISTATS 2023 - 26th International Conference on Artificial Intelligence and Statistics. Valencia, Spain, Apr 25-27, 2023. URL
Abstract

Learning causal relationships from empirical observations is a central task in scientific research. A common method is to employ structural causal models that postulate noisy functional relations among a set of interacting variables. To ensure unique identifiability of causal directions, researchers consider restricted subclasses of structural causal models. Post-nonlinear (PNL) causal models constitute one of the most flexible options for such restricted subclasses, containing in particular the popular additive noise models as a further subclass. However, learning PNL models is not well studied beyond the bivariate case. The existing methods learn non-linear functional relations by minimizing residual dependencies and subsequently test independence from residuals to determine causal orientations. However, these methods can be prone to overfitting and, thus, difficult to tune appropriately in practice. As an alternative, we propose a new approach for PNL causal discovery that uses rank-based methods to estimate the functional parameters. This new approach exploits natural invariances of PNL models and disentangles the estimation of the non-linear functions from the independence tests used to find causal orientations. We prove consistency of our method and validate our results in numerical experiments.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics


2022


[2]
R. Foygel Barber, M. Drton, N. Sturma and L. Weihs.
Half-trek criterion for identifiability of latent variable models.
Annals of Statistics 50.6 (Dec. 2022). DOI
Abstract

We consider linear structural equation models with latent variables and develop a criterion to certify whether the direct causal effects between the observable variables are identifiable based on the observed covariance matrix. Linear structural equation models assume that both observed and latent variables solve a linear equation system featuring stochastic noise terms. Each model corresponds to a directed graph whose edges represent the direct effects that appear as coefficients in the equation system. Prior research has developed a variety of methods to decide identifiability of direct effects in a latent projection framework, in which the confounding effects of the latent variables are represented by correlation among noise terms. This approach is effective when the confounding is sparse and effects only small subsets of the observed variables. In contrast, the new latent-factor half-trek criterion (LF-HTC) we develop in this paper operates on the original unprojected latent variable model and is able to certify identifiability in settings, where some latent variables may also have dense effects on many or even all of the observables. Our LF-HTC is an effective sufficient criterion for rational identifiability, under which the direct effects can be uniquely recovered as rational functions of the joint covariance matrix of the observed random variables. When restricting the search steps in LF-HTC to consider subsets of latent variables of bounded size, the criterion can be verified in time that is polynomial in the size of the graph.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics


[1]
D. Strieder and M. Drton.
On the choice of the splitting ratio for the split likelihood ratio test.
Electronic Journal of Statistics 16.2 (Mar. 2022). DOI
Abstract

The recently introduced framework of universal inference provides a new approach to constructing hypothesis tests and confidence regions that are valid in finite samples and do not rely on any specific regularity assumptions on the underlying statistical model. At the core of the methodology is a split likelihood ratio statistic, which is formed under data splitting and compared to a cleverly selected universal critical value. As this critical value can be very conservative, it is interesting to mitigate the potential loss of power by careful choice of the ratio according to which data are split. Motivated by this problem, we study the split likelihood ratio test under local alternatives and introduce the resulting class of noncentral split chi-square distributions. We investigate the properties of this new class of distributions and use it to numerically examine and propose an optimal choice of the data splitting ratio for tests of composite hypotheses of different dimensions.

MCML Authors
Link to Mathias Drton

Mathias Drton

Prof. Dr.

Mathematical Statistics