Home  | Research | Groups | Drton

Research Group Mathias Drton


Link to website at TUM PI Matchmaking

Mathias Drton

Prof. Dr.

Principal Investigator

Mathias Drton

is Professor of Mathematical Statistics at TU Munich.

He works on methods and theory in the field of statistics. His main interest is the analysis of complex multivariate data. The main focus lies on graphical models, which capture fine causal relationships and find manifold applications in modern data-driven science. The aim of the research is, amongst others, to clarify by means of algebraic and probability theory under which circumstances data allow conclusions about causal relationships and to develop efficient methods for their estimation.

Team members @MCML

PhD Students

Link to website

Hanke Guo

Link to website

David Strieder

Link to website

Nils Sturma

Link to website

Daniele Tramontano

Recent News @MCML

Link to MCML at UAI 2025

19.07.2025

MCML at UAI 2025

Three Accepted Papers

Link to MCML at ICML 2025

11.07.2025

MCML at ICML 2025

25 Accepted Papers (20 Main, and 5 Workshops)

Link to MCML Researchers With 130 Papers in Highly-Ranked Journals

02.01.2025

MCML Researchers With 130 Papers in Highly-Ranked Journals

Link to MCML at ICML 2024

19.07.2024

MCML at ICML 2024

24 Accepted Papers (17 Main, and 7 Workshops)

Publications @MCML

2025


[30] Top Journal
S. Lumpp • M. Drton
On weak convergence of Gaussian conditional distributions.
Statistics and Probability Letters 226.110497. Nov. 2025. DOI

[29] Top Journal
Y. S. Wang • M. Kolar • M. Drton
Confidence Sets for Causal Orderings.
Journal of the American Statistical Association. Oct. 2025. DOI

[28] Top Journal
D. StriederM. Drton
Identifying total causal effects in linear models under partial homoscedasticity.
International Journal of Approximate Reasoning 183.109455. Aug. 2025. DOI

[27]
R. Schwank • M. Drton
On the distance between mean and geometric median in high dimensions.
Preprint (Aug. 2025). arXiv

[26] A Conference
M. Drton • M. Garrote-López • N. Nikov • E. Robeva • Y. S. Wang
Causal Discovery for Linear Non-Gaussian Models with Disjoint Cycles.
UAI 2025 - 41st Conference on Uncertainty in Artificial Intelligence. Rio de Janeiro, Brazil, Jul 21-25, 2025. URL GitHub

[25] A* Conference
D. Tramontano • Y. Kivva • S. Salehkaleybar • N. Kiyavash • M. Drton
Causal Effect Identification in lvLiNGAM from Higher-Order Cumulants.
ICML 2025 - 42nd International Conference on Machine Learning. Vancouver, Canada, Jul 13-19, 2025. URL

[24] Top Journal
L. Hafner • G. Sturm • S. Lumpp • M. Drton • M. List
Single-cell differential expression analysis between conditions within nested settings.
Briefings in Bioinformatics 26.4. Jul. 2025. DOI


[22] Top Journal
T. Boege • M. Drton • B. Hollering • S. Lumpp • P. Misra • D. Schkoda
Conditional independence in stationary distributions of diffusions.
Stochastic Processes and their Applications 184.104604. Jun. 2025. DOI

[21]
K. Göbler • T. Windisch • M. Drton
Nonlinear Causal Discovery for Grouped Data.
Preprint (Jun. 2025). arXiv

[20]
D. Strieder
Structure Uncertainty in Causal Inference.
Dissertation TU München. May. 2025. URL

[19]
H. Shi • M. Drton
On universal inference in Gaussian mixture models.
Preprint (Mar. 2025). arXiv

[18]
M. Drton • A. Grosdos • I. Portakal • N. Sturma
Algebraic Sparse Factor Analysis.
SIAM Journal on Applied Algebra and Geometry 9. Feb. 2025. DOI

[17]
E. Banzato • M. Drton • K. Saraf-Poor • H. Shi
Existence of Direct Density Ratio Estimators.
Preprint (Feb. 2025). arXiv

[16]
N. Sturma • M. Kranzlmueller • I. Portakal • M. Drton
Matching Criterion for Identifiability in Sparse Factor Analysis.
Preprint (Feb. 2025). arXiv

[15]
R. Schwank • A. McCormack • M. Drton
Robust Score Matching.
Preprint (Jan. 2025). arXiv

2024


[14]
Y. Liang • O. Zadorozhnyi • M. Drton
Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic Graphical Models.
PGM 2024 - 12th International Conference on Probabilistic Graphical Models. Nijmegen, The Netherlands, Sep 11-13, 2024. URL

[13]
D. StriederM. Drton
Identifying Total Causal Effects in Linear Models under Partial Homoscedasticity.
PGM 2024 - 12th International Conference on Probabilistic Graphical Models. Nijmegen, The Netherlands, Sep 11-13, 2024. URL

[12]
D. Schkoda • E. Robeva • M. Drton
Causal Discovery of Linear Non-Gaussian Causal Models with Unobserved Confounding.
Preprint (Aug. 2024). arXiv

[11] A* Conference
D. Tramontano • Y. Kivva • S. Salehkaleybar • M. Drton • N. Kiyavash
Causal Effect Identification in LiNGAM Models with Latent Confounders.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

[10]
K. Göbler • M. Drton • S. Mukherjee • A. Miloschewski
High-dimensional undirected graphical models for arbitrary mixed data.
Electronic Journal of Statistics 18.1. Jun. 2024. DOI

[9]
P. Dettling • M. Drton • M. Kolar
On the Lasso for Graphical Continuous Lyapunov Models.
CLeaR 2024 - 3rd Conference on Causal Learning and Reasoning. Los Angeles, CA, USA, Apr 01-03, 2024. URL

[8]
K. Göbler • T. Windisch • M. Drton • T. Pychynski • M. Roth • S. Sonntag
causalAssembly: Generating Realistic Production Data for Benchmarking Causal Discovery.
CLeaR 2024 - 3rd Conference on Causal Learning and Reasoning. Los Angeles, CA, USA, Apr 01-03, 2024. URL

[7]
D. StriederM. Drton
Dual Likelihood for Causal Inference under Structure Uncertainty.
CLeaR 2024 - 3rd Conference on Causal Learning and Reasoning. Los Angeles, CA, USA, Apr 01-03, 2024. URL

[6] Top Journal
N. SturmaM. Drton • D. Leung
Testing many constraints in possibly irregular models using incomplete U-statistics.
Journal of the Royal Statistical Society. Series B (Statistical Methodology) 86.4. Mar. 2024. DOI

2023


[5] A* Conference
N. Sturma • C. Squires • M. Drton • C. Uhler
Unpaired Multi-Domain Causal Representation Learning.
NeurIPS 2023 - 37th Conference on Neural Information Processing Systems. New Orleans, LA, USA, Dec 10-16, 2023. URL

[4]
D. StriederM. Drton
Confidence in causal inference under structure uncertainty in linear causal models with equal variances.
Journal of Causal Inference 11.1. Dec. 2023. DOI

[3] A Conference
G. Keropyan • D. StriederM. Drton
Rank-Based Causal Discovery for Post-Nonlinear Models.
AISTATS 2023 - 26th International Conference on Artificial Intelligence and Statistics. Valencia, Spain, Apr 25-27, 2023. URL

2022


[2] Top Journal
R. Foygel Barber • M. DrtonN. Sturma • L. Weihs
Half-trek criterion for identifiability of latent variable models.
Annals of Statistics 50.6. Dec. 2022. DOI

[1]
D. StriederM. Drton
On the choice of the splitting ratio for the split likelihood ratio test.
Electronic Journal of Statistics 16.2. Mar. 2022. DOI