17.12.2024
©TUM
Daniel Rückert Advances Stroke Diagnosis With AI Innovation
TUM News
MCML Director Daniel Rückert and his collaborators have achieved a groundbreaking milestone in medical AI. Their innovative model uses machine learning to precisely determine the timing of strokes based on CT imaging. This advancement is critical for improving stroke diagnosis and ensuring patients receive timely and effective treatment. By addressing a long-standing challenge in neurology, this research exemplifies the transformative potential of AI in healthcare.
«We believe that our model is so powerful because it not only assesses how dark the damaged region is, but also includes additional features from the scans, such as texture, and accounts for variations within the damaged areas and background.»
Daniel Rückert
MCML-Director
Related
13.11.2025
Explaining AI Decisions: Shapley Values Enable Smart Exosuits
AI meets wearable robotics: MCML and Harvard researchers make exosuits smarter and safer with explainable optimization, presented at ECML-PKDD 2025.
©Gorodenkoff-stock.adobe.com
03.11.2025
Research on Human-Centred Exosuit Technology Highlighted in Börsen-Zeitung
Julian Rodemann worked with Harvard on interpretable algorithms for “Back Exosuits,” improving human–machine interaction.
02.11.2025
MCML at EMNLP 2025
MCML researchers are represented with 39 papers at EMNLP 2025 (18 Main, 13 Findings, and 8 Workshops).