17.12.2024

©TUM
Daniel Rückert Advances Stroke Diagnosis With AI Innovation
TUM News Article
MCML Director Daniel Rückert and his collaborators have achieved a groundbreaking milestone in medical AI. Their innovative model uses machine learning to precisely determine the timing of strokes based on CT imaging. This advancement is critical for improving stroke diagnosis and ensuring patients receive timely and effective treatment. By addressing a long-standing challenge in neurology, this research exemplifies the transformative potential of AI in healthcare.
«We believe that our model is so powerful because it not only assesses how dark the damaged region is, but also includes additional features from the scans, such as texture, and accounts for variations within the damaged areas and background.»
Daniel Rückert
MCML-Director
Related

09.10.2025
Rethinking AI in Public Institutions - Balancing Prediction and Capacity
Unai Fischer Abaigar explores how AI can make public decisions fairer, smarter, and more effective.

08.10.2025
MCML-LAMARR Workshop at University of Bonn
MCML and Lamarr researchers met in Bonn to exchange ideas on NLP, LLM finetuning, and AI ethics.


08.10.2025
Three MCML Members Win Best Paper Award at AutoML 2025
MCML PI Matthias Feurer and Director Bernd Bischl’s paper on overtuning won Best Paper at AutoML 2025, offering insights for robust HPO.

29.09.2025
Machine Learning for Climate Action - With Researcher Kerstin Forster
Kerstin Forster researches how AI can cut emissions, boost renewable energy, and drive corporate sustainability.