Home  | News

18.11.2024

Teaser image to Several MCML PIs receive BMBF funding

Several MCML PIs Receive BMBF Funding

Funding of Two New Joint Projects

The BMBF is funding two new joint projects with several MCML researchers involved. One teaches AI models causal relationships, the other refines the tactile abilities of robots.


CausalNet: AI that Understands Cause and Effect
The CausalNet project aims to advance machine learning (ML) by integrating causal reasoning, moving beyond current models that rely solely on correlations. This approach promises greater reliability and performance, particularly in fields like medicine, where understanding cause-and-effect relationships could enable targeted therapies.


Funded with nearly €2 million by the German Federal Ministry of Education and Research (BMBF), CausalNet will develop novel methods for embedding causality into ML, working with experts from LMU, TUM, KIT, Helmholtz AI, and Economic AI GmbH – including MCML PIs Stefan Feuerriegel (spokesperson of the project), Stefan Bauer, and Niki Kilbertus. The project will tackle challenges in high-dimensional environments using tools from representation learning, statistical efficiency, and specialized ML paradigms, with a focus on open-source outputs.

GeniusRobot: Enhancing Robotic Vision and Grasping with AI
The other project focuses on improving robotic manipulation using generative AI. MCML PIs Gitta Kutyniok and Björn Ommer are developing interpretable AI models that predict tactile information from visual data, enabling robots to dynamically adapt their grip.


The project leverages multimodal AI to integrate and interpret sensory inputs, enhancing robotic flexibility and resilience. It also explores converting tactile data back into visualizations, aiding manipulation of partially visible objects. The research aims to unlock new use cases in automated manufacturing and human-machine interaction, prioritizing safety and interpretability in critical environments.

Congrats to everyone involved!

#award #research #bauer-s #feuerriegel #kilbertus #kutyniok #ommer
Subscribe to RSS News feed

Related

Link to "See, Don’t Assume": Revealing and Reducing Gender Bias in AI

18.12.2025

"See, Don’t Assume": Revealing and Reducing Gender Bias in AI

ICLR 2025 research led by Zeynep Akata’s team reveals and reduces gender bias in popular vision-language AI models.

Link to Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine

16.12.2025

Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine

MCML PI Fabian Theis discusses AI-driven precision medicine and its growing impact on individualized healthcare and biomedical research.

Link to Gitta Kutyniok Featured in VDI Nachrichten on AI Ethics

16.12.2025

Gitta Kutyniok Featured in VDI Nachrichten on AI Ethics

Gitta Kutyniok discusses measurable criteria for ethical AI, promoting safe and responsible autonomous decision-making.

Link to Hinrich Schütze Featured in WirtschaftsWoche on Innovative AI Approaches

16.12.2025

Hinrich Schütze Featured in WirtschaftsWoche on Innovative AI Approaches

Hinrich Schütze discusses Giotto.ai’s efficient AI models, highlighting memory separation and context-aware decoding to improve robustness.

Link to Xiaoxiang Zhu Featured in Focus Online on Global 3D Building Atlas

16.12.2025

Xiaoxiang Zhu Featured in Focus Online on Global 3D Building Atlas

Xiaoxiang Zhu maps 2.75B buildings in 3D, revealing global urbanization, housing, and social inequalities using AI.

Back to Top