23.06.2024

Teaser image to

MCML at COLT 2024: One Accepted Paper

37th Annual Conference on Learning Theory (COLT 2024). Edmonton, Canada, 30.06.2024–03.07.2024

We are happy to announce that MCML researchers have contributed a total of 1 paper to COLT 2024. Congrats to our researchers!

Main Track (1 paper)

C. M. Verdun, O. Melnyk, F. Krahmer and P. Jung.
Fast, blind, and accurate: Tuning-free sparse regression with global linear convergence.
COLT 2024 - 37th Annual Conference on Learning Theory. Edmonton, Canada, Jun 30-Jul 03, 2024. URL
Abstract

Many algorithms for high-dimensional regression problems require the calibration of regularization hyperparameters. This, in turn, often requires the knowledge of the unknown noise variance in order to produce meaningful solutions. Recent works show, however, that there exist certain estimators that are pivotal, i.e., the regularization parameter does not depend on the noise level; the most remarkable example being the square-root lasso. Such estimators have also been shown to exhibit strong connections to distributionally robust optimization. Despite the progress in the design of pivotal estimators, the resulting minimization problem is challenging as both the loss function and the regularization term are non-smooth. To date, the design of fast, robust, and scalable algorithms with strong convergence rate guarantees is still an open problem. This work addresses this problem by showing that an iteratively reweighted least squares (IRLS) algorithm exhibits global linear convergence under the weakest assumption available in the literature. We expect our findings will also have implications for multi-task learning and distributionally robust optimization.

MCML Authors

Claudio Mayrink Verdun

Dr.

Link to Profile Felix Krahmer

Felix Krahmer

Prof. Dr.

Principal Investigator


#research #top-tier-work #krahmer
Subscribe to RSS News feed

Related

Link to Rethinking AI in Public Institutions - Balancing Prediction and Capacity

09.10.2025

Rethinking AI in Public Institutions - Balancing Prediction and Capacity

Unai Fischer Abaigar explores how AI can make public decisions fairer, smarter, and more effective.

Link to MCML-LAMARR Workshop at University of Bonn

08.10.2025

MCML-LAMARR Workshop at University of Bonn

MCML and Lamarr researchers met in Bonn to exchange ideas on NLP, LLM finetuning, and AI ethics.

Link to Three MCML Members Win Best Paper Award at AutoML 2025

08.10.2025

Three MCML Members Win Best Paper Award at AutoML 2025

MCML PI Matthias Feurer and Director Bernd Bischl’s paper on overtuning won Best Paper at AutoML 2025, offering insights for robust HPO.

Link to Machine Learning for Climate Action - with researcher Kerstin Forster

29.09.2025

Machine Learning for Climate Action - With Researcher Kerstin Forster

Kerstin Forster researches how AI can cut emissions, boost renewable energy, and drive corporate sustainability.

Link to Making Machine Learning More Accessible with AutoML

26.09.2025

Making Machine Learning More Accessible With AutoML

Matthias Feurer discusses AutoML, hyperparameter optimization, OpenML, and making machine learning more accessible and efficient for researchers.

Back to Top