Home  | News

22.01.2024

Teaser image to The MCML-Exhibition at Deutsches Museum Munich

The MCML-Exhibition at Deutsches Museum Munich

Our Exhibition Was a Great Success - A Short Recap

The Science Communication Lab at Deutsches Museum hosted our MCML exhibition that attracted thousands of visitors over three weeks.

The exhibition featured interactive exhibits on machine learning, simultaneous localization and mapping (SLAM), and Stable Diffusion, an algorithm that connects images and text. Visitors gained insights into cutting-edge research and enjoyed engaging hands-on experiences.

Around 1.000 visitors per day passed by the Science Communication Lab at Deutsches Museum and saw our exhibition during the last three weeks. It was a lot of fun and we are happy that so many visitors were interested and got a glimpse of our research.

One of the exhibits called AMELIE taught visitors the basics of machine learning in a fun and interactive way. The exhibit was built by the LMU Media Informatics Group of our PI Albrecht Schmidt. You can see a video of the exhibit on YouTube.

In addition we had a demo showing how it is possible to simultaneously do localization and mapping of the environment using a camera and an attached IMU sensor. The method is called DM-VIO and can be used in self-driving cars, for example. DM-VIO is a project of the TUM Computer Vision Group led by our director Daniel Cremers.

Last but not least, we gave some insights into Stable Diffusion, a deep learning model that generates images from text descriptions. Stable Diffusion is developed by the LMU Computer Vision & Learning Group of our PI Björn Ommer. We explained how Stable Diffusion learns the connection between image and text through a latent diffusion model process.


Poster 1

Poster 1: How does AI learn

AMELIE is the name of the museum exhibit that helped visitors understand machine learning principles.

Poster 2

Poster 2: Reconstructing the world with AI

We presented DM-VIO, a monocular visual-inertial odometry system based on two novel techniques called delayed marginalization and pose graph bundle adjustment.

Poster 3

Poster 3: DM-VIO demo

On this poster visitors saw how the Simultaneous Localization and Mapping unfolds

Poster 4

Poster 4: Image generation using AI

Visitors saw how Stable Diffusion works and were able to try it out themselves.


#event #research #outreach
Subscribe to RSS News feed

Related

Link to Needle in a Haystack: Finding Exact Moments in Long Videos

05.02.2026

Needle in a Haystack: Finding Exact Moments in Long Videos

ECCV 2024 research introduces RGNet, an AI model that finds exact moments in long videos using unified retrieval and grounding.

Read more
Link to Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

04.02.2026

Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”

Benjamin Busam leads the scientific design of the “CuBy” satellite network, delivering AI-ready Earth observation data for Bavaria.

Read more
Link to Cracks in the foundations of cosmology

30.01.2026

Cracks in the Foundations of Cosmology

Daniel Grün examines cosmological tensions that challenge the Standard Model and may point toward new physics.

Read more
Link to How Machines Can Discover Hidden Rules Without Supervision

29.01.2026

How Machines Can Discover Hidden Rules Without Supervision

ICLR 2025 research shows how self-supervised learning uncovers hidden system dynamics from unlabeled, high-dimensional data.

Read more
Link to Matthias Nießner Co-Founds AI Startup Synthesia

28.01.2026

Matthias Nießner Co-Founds AI Startup Synthesia

Julien Gagneur comments on DeepMind’s AlphaGenome, highlighting its precision and remaining challenges in genome prediction.

Read more
Back to Top