26.04.2023

Teaser image to

MCML Researchers With Three Papers at ICLR 2023

11th International Conference on Learning Representations (ICLR 2023). Vienna, Austria, 01.05.2023–05.05.2023

We are happy to announce that MCML researchers are represented with three papers at ICLR 2023. Congrats to our researchers!

Main Track (3 papers)

D. Frauen and S. Feuerriegel.
Estimating individual treatment effects under unobserved confounding using binary instruments.
ICLR 2023 - 11th International Conference on Learning Representations. Kigali, Rwanda, May 01-05, 2023. URL
Abstract

Estimating conditional average treatment effects (CATEs) from observational data is relevant in many fields such as personalized medicine. However, in practice, the treatment assignment is usually confounded by unobserved variables and thus introduces bias. A remedy to remove the bias is the use of instrumental variables (IVs). Such settings are widespread in medicine (e.g., trials where the treatment assignment is used as binary IV). In this paper, we propose a novel, multiply robust machine learning framework, called MRIV, for estimating CATEs using binary IVs and thus yield an unbiased CATE estimator. Different from previous work for binary IVs, our framework estimates the CATE directly via a pseudo outcome regression. (1)~We provide a theoretical analysis where we show that our framework yields multiple robust convergence rates: our CATE estimator achieves fast convergence even if several nuisance estimators converge slowly. (2)~We further show that our framework asymptotically outperforms state-of-the-art plug-in IV methods for CATE estimation, in the sense that it achieves a faster rate of convergence if the CATE is smoother than the individual outcome surfaces. (3)~We build upon our theoretical results and propose a tailored deep neural network architecture called MRIV-Net for CATE estimation using binary IVs. Across various computational experiments, we demonstrate empirically that our MRIV-Net achieves state-of-the-art performance. To the best of our knowledge, our MRIV is the first multiply robust machine learning framework tailored to estimating CATEs in the binary IV setting.

MCML Authors
Link to website

Dennis Frauen

Artificial Intelligence in Management

Link to Profile Stefan Feuerriegel

Stefan Feuerriegel

Prof. Dr.

Artificial Intelligence in Management


R. Paolino, A. Bojchevski, S. Günnemann, G. Kutyniok and R. Levie.
Unveiling the Sampling Density in Non-Uniform Geometric Graphs.
ICLR 2023 - 11th International Conference on Learning Representations. Kigali, Rwanda, May 01-05, 2023. URL
Abstract

A powerful framework for studying graphs is to consider them as geometric graphs: nodes are randomly sampled from an underlying metric space, and any pair of nodes is connected if their distance is less than a specified neighborhood radius. Currently, the literature mostly focuses on uniform sampling and constant neighborhood radius. However, real-world graphs are likely to be better represented by a model in which the sampling density and the neighborhood radius can both vary over the latent space. For instance, in a social network communities can be modeled as densely sampled areas, and hubs as nodes with larger neighborhood radius. In this work, we first perform a rigorous mathematical analysis of this (more general) class of models, including derivations of the resulting graph shift operators. The key insight is that graph shift operators should be corrected in order to avoid potential distortions introduced by the non-uniform sampling. Then, we develop methods to estimate the unknown sampling density in a self-supervised fashion. Finally, we present exemplary applications in which the learnt density is used to 1) correct the graph shift operator and improve performance on a variety of tasks, 2) improve pooling, and 3) extract knowledge from networks. Our experimental findings support our theory and provide strong evidence for our model.

MCML Authors
Link to website

Raffaele Paolino

Mathematical Foundations of Artificial Intelligence

Link to Profile Stephan Günnemann

Stephan Günnemann

Prof. Dr.

Data Analytics & Machine Learning

Link to Profile Gitta Kutyniok

Gitta Kutyniok

Prof. Dr.

Mathematical Foundations of Artificial Intelligence


T. Pielok, B. Bischl and D. Rügamer.
Approximate Bayesian Inference with Stein Functional Variational Gradient Descent.
ICLR 2023 - 11th International Conference on Learning Representations. Kigali, Rwanda, May 01-05, 2023. URL
Abstract

We propose a general-purpose variational algorithm that forms a natural analogue of Stein variational gradient descent (SVGD) in function space. While SVGD successively updates a set of particles to match a target density, the method introduced here of Stein functional variational gradient descent (SFVGD) updates a set of particle functions to match a target stochastic process (SP). The update step is found by minimizing the functional derivative of the Kullback-Leibler divergence between SPs. SFVGD can either be used to train Bayesian neural networks (BNNs) or for ensemble gradient boosting. We show the efficacy of training BNNs with SFVGD on various real-world datasets.

MCML Authors
Link to website

Tobias Pielok

Statistical Learning and Data Science

Link to Profile Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning and Data Science

Link to Profile David Rügamer

David Rügamer

Prof. Dr.

Statistics, Data Science and Machine Learning


26.04.2023


Subscribe to RSS News feed

Related

Link to Mingyang Wang receives Award at ACL 2025

18.08.2025

Mingyang Wang Receives Award at ACL 2025

MCML Junior Member Mingyang Wang wins SAC Highlights Award at ACL 2025 for research on cross-lingual consistency in language models.

Link to Digital Twins for Surgery - with researcher Azade Farshad

18.08.2025

Digital Twins for Surgery - With Researcher Azade Farshad

Azade Farshad develops patient digital twins at TUM & MCML to improve personalized treatment, surgical planning, and training.

Link to From Physics Dreams to Algorithm Discovery - with Niki Kilbertus

13.08.2025

From Physics Dreams to Algorithm Discovery - With Niki Kilbertus

Niki Kilbertus develops AI algorithms to uncover cause and effect, making science smarter and decisions in fields like medicine more reliable.

Link to AI for Dynamic Urban Mapping - with researcher Shanshan Bai

11.08.2025

AI for Dynamic Urban Mapping - With Researcher Shanshan Bai

Shanshan Bai uses geo-tagged social media and AI to map cities in real time. Part of KI Trans, funded by DATIpilot to support AI in education.

Link to What is intelligence—and what kind of intelligence do we want in our future? With Sven Nyholm

06.08.2025

What Is Intelligence—and What Kind of Intelligence Do We Want in Our Future? With Sven Nyholm

Sven Nyholm explores how AI reshapes authorship, responsibility and creativity, calling for democratic oversight in shaping our AI future.