09.08.2022

Teaser image to

MCML at KDD 2022: One Accepted Paper

28th ACM SIGKDD International Conference on Knowledge Discovery and Data (KDD 2022). Washington, DC, USA, 14.08.2022–18.08.2022

We are happy to announce that MCML researchers have contributed a total of 1 paper to KDD 2022. Congrats to our researchers!

Main Track (1 paper)

C. Leiber, L. G. M. Bauer, M. Neumayr, C. Plant and C. Böhm.
The DipEncoder: Enforcing Multimodality in Autoencoders.
KDD 2022 - 28th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, DC, USA, Aug 14-18, 2022. DOI
Abstract

Hartigan’s Dip-test of unimodality gained increasing interest in unsupervised learning over the past few years. It is free from complex parameterization and does not require a distribution assumed a priori. A useful property is that the resulting Dip-values can be derived to find a projection axis that identifies multimodal structures in the data set. In this paper, we show how to apply the gradient not only with respect to the projection axis but also with respect to the data to improve the cluster structure. By tightly coupling the Dip-test with an autoencoder, we obtain an embedding that clearly separates all clusters in the data set. This method, called DipEncoder, is the basis of a novel deep clustering algorithm. Extensive experiments show that the DipEncoder is highly competitive to state-of-the-art methods.

MCML Authors

Christian Böhm

Prof. Dr.

Principal Investigator

* Former Principal Investigator


#research #top-tier-work #seidl
Subscribe to RSS News feed

Related

Link to Rethinking AI in Public Institutions - Balancing Prediction and Capacity

09.10.2025

Rethinking AI in Public Institutions - Balancing Prediction and Capacity

Unai Fischer Abaigar explores how AI can make public decisions fairer, smarter, and more effective.

Link to MCML-LAMARR Workshop at University of Bonn

08.10.2025

MCML-LAMARR Workshop at University of Bonn

MCML and Lamarr researchers met in Bonn to exchange ideas on NLP, LLM finetuning, and AI ethics.

Link to Three MCML Members Win Best Paper Award at AutoML 2025

08.10.2025

Three MCML Members Win Best Paper Award at AutoML 2025

MCML PI Matthias Feurer and Director Bernd Bischl’s paper on overtuning won Best Paper at AutoML 2025, offering insights for robust HPO.

Link to Machine Learning for Climate Action - with researcher Kerstin Forster

29.09.2025

Machine Learning for Climate Action - With Researcher Kerstin Forster

Kerstin Forster researches how AI can cut emissions, boost renewable energy, and drive corporate sustainability.

Link to Making Machine Learning More Accessible with AutoML

26.09.2025

Making Machine Learning More Accessible With AutoML

Matthias Feurer discusses AutoML, hyperparameter optimization, OpenML, and making machine learning more accessible and efficient for researchers.

Back to Top