20.10.2022

Teaser image to

MCML Researchers With Two Papers at ECCV 2022

17th European Conference on Computer Vision (ECCV 2022). Tel Aviv, Israel, 23.10.2022–27.10.2022

We are happy to announce that MCML researchers are represented with two papers at ECCV 2022. Congrats to our researchers!

Main Track (2 papers)

S. Shit, R. Koner, B. Wittmann, J. C. Paetzold, I. Ezhov, H. Li, J. Pan, S. Sharifzadeh, G. Kaissis, V. Tresp and B. Menze.
Relationformer: A Unified Framework for Image-to-Graph Generation.
ECCV 2022 - 17th European Conference on Computer Vision. Tel Aviv, Israel, Oct 23-27, 2022. DOI GitHub
Abstract

A comprehensive representation of an image requires understanding objects and their mutual relationship, especially in image-to-graph generation, e.g., road network extraction, blood-vessel network extraction, or scene graph generation. Traditionally, image-to-graph generation is addressed with a two-stage approach consisting of object detection followed by a separate relation prediction, which prevents simultaneous object-relation interaction. This work proposes a unified one-stage transformer-based framework, namely Relationformer that jointly predicts objects and their relations. We leverage direct set-based object prediction and incorporate the interaction among the objects to learn an object-relation representation jointly. In addition to existing [obj]-tokens, we propose a novel learnable token, namely [rln]-token. Together with [obj]-tokens, [rln]-token exploits local and global semantic reasoning in an image through a series of mutual associations. In combination with the pair-wise [obj]-token, the [rln]-token contributes to a computationally efficient relation prediction. We achieve state-of-the-art performance on multiple, diverse and multi-domain datasets that demonstrate our approach’s effectiveness and generalizability.

MCML Authors

Georgios Kaissis

Dr.

Associate

* Former Associate

Link to Profile Volker Tresp

Volker Tresp

Prof. Dr.

Principal Investigator


C. Tomani, D. Cremers and F. Buettner.
Parameterized Temperature Scaling for Boosting the Expressive Power in Post-Hoc Uncertainty Calibration.
ECCV 2022 - 17th European Conference on Computer Vision. Tel Aviv, Israel, Oct 23-27, 2022. DOI GitHub
Abstract

We address the problem of uncertainty calibration and introduce a novel calibration method, Parametrized Temperature Scaling (PTS). Standard deep neural networks typically yield uncalibrated predictions, which can be transformed into calibrated confidence scores using post-hoc calibration methods. In this contribution, we demonstrate that the performance of accuracy-preserving state-of-the-art post-hoc calibrators is limited by their intrinsic expressive power. We generalize temperature scaling by computing prediction-specific temperatures, parameterized by a neural network. We show with extensive experiments that our novel accuracy-preserving approach consistently outperforms existing algorithms across a large number of model architectures, datasets and metrics.

MCML Authors


Subscribe to RSS News feed

Related

Link to Machine Learning for Climate Action - with researcher Kerstin Forster

29.09.2025

Machine Learning for Climate Action - With Researcher Kerstin Forster

Kerstin Forster researches how AI can cut emissions, boost renewable energy, and drive corporate sustainability.

Link to Björn Ommer featured in WELT

26.09.2025

Björn Ommer Featured in WELT

MCML PI Björn Ommer told WELT that AI can never be entirely neutral and that human judgment remains essential.

Link to Björn Schuller featured in Macwelt article

25.09.2025

Björn Schuller Featured in Macwelt Article

MCML PI Björn Schuller discusses in Macwelt how Apple Watch monitors health, detects subtle changes, and supports early intervention.

Link to MCML PI Björn Ommer featured on ZDF NANO Talk

24.09.2025

MCML PI Björn Ommer Featured on ZDF NANO Talk

MCML PIs Björn Ommer & Alena Buyx discuss AI’s essence on ZDF NANO Talk, covering tech, ethics, and societal impact.

Link to Benjamin Lange Explores Opportunities and Risks of AI Agents

23.09.2025

Benjamin Lange Explores Opportunities and Risks of AI Agents

Benjamin Lange highlights both opportunities and ethical risks of AI agents and calls for clear rules to ensure they benefit society.

Back to Top