18.07.2022

Teaser image to

MCML Researchers With Three Papers at IJCAI-ECAI 2022

31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI-ECAI 2022). Vienna, Austria, 23.07.2022–29.07.2022

We are happy to announce that MCML researchers are represented with three papers at IJCAI-ECAI 2022. Congrats to our researchers!

Main Track (2 papers)

M. Ali, M. Berrendorf, M. Galkin, V. Thost, T. Ma, V. Tresp and J. Lehmann.
Improving Inductive Link Prediction Using Hyper-Relational Facts (Extended Abstract).
IJCAI-ECAI 2022 - Best paper track at the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence. Vienna, Austria, Jul 23-29, 2022. DOI
Abstract

For many years, link prediction on knowledge graphs (KGs) has been a purely transductive task, not allowing for reasoning on unseen entities. Recently, increasing efforts are put into exploring semi- and fully inductive scenarios, enabling inference over unseen and emerging entities. Still, all these approaches only consider triple-based KGs, whereas their richer counterparts, hyper-relational KGs (e.g., Wikidata), have not yet been properly studied. In this work, we classify different inductive settings and study the benefits of employing hyper-relational KGs on a wide range of semi- and fully inductive link prediction tasks powered by recent advancements in graph neural networks. Our experiments on a novel set of benchmarks show that qualifiers over typed edges can lead to performance improvements of 6% of absolute gains (for the Hits@10 metric) compared to triple-only baselines.

MCML Authors
Max Berrendorf

Max Berrendorf

Dr.

* Former Member

Link to Profile Volker Tresp

Volker Tresp

Prof. Dr.

Database Systems and Data Mining AI Lab


E. Schede, J. Brandt, A. Tornede, M. Wever, V. Bengs, E. Hüllermeier and K. Tierney.
A Survey of Methods for Automated Algorithm Configuration.
IJCAI-ECAI 2022 - 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence. Vienna, Austria, Jul 23-29, 2022. Extended Abstract. DOI
Abstract

Algorithm configuration (AC) is concerned with the automated search of the most suitable parameter configuration of a parametrized algorithm. There is currently a wide variety of AC problem variants and methods proposed in the literature. Existing reviews do not take into account all derivatives of the AC problem, nor do they offer a complete classification scheme. To this end, we introduce taxonomies to describe the AC problem and features of configuration methods, respectively. We review existing AC literature within the lens of our taxonomies, outline relevant design choices of configuration approaches, contrast methods and problem variants against each other, and describe the state of AC in industry. Finally, our review provides researchers and practitioners with a look at future research directions in the field of AC.

MCML Authors
Link to Profile Eyke Hüllermeier

Eyke Hüllermeier

Prof. Dr.

Artificial Intelligence and Machine Learning


Workshops (1 papers)

A. Klaß, S. M. Lorenz, M. W. Lauer-Schmaltz, D. Rügamer, B. Bischl, C. Mutschler and F. Ott.
Uncertainty-aware Evaluation of Time-Series Classification for Online Handwriting Recognition with Domain Shift.
STRL 2022 @IJCAI-ECAI 2022 - Workshop on Spatio-Temporal Reasoning and Learningat the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence. Vienna, Austria, Jul 23-29, 2022. URL
Abstract

For many applications, analyzing the uncertainty of a machine learning model is indispensable. While research of uncertainty quantification (UQ) techniques is very advanced for computer vision applications, UQ methods for spatio-temporal data are less studied. In this paper, we focus on models for online handwriting recognition, one particular type of spatio-temporal data. The data is observed from a sensor-enhanced pen with the goal to classify written characters. We conduct a broad evaluation of aleatoric (data) and epistemic (model) UQ based on two prominent techniques for Bayesian inference, Stochastic Weight Averaging-Gaussian (SWAG) and Deep Ensembles. Next to a better understanding of the model, UQ techniques can detect out-of-distribution data and domain shifts when combining right-handed and left-handed writers (an underrepresented group).

MCML Authors
Link to Profile David Rügamer

David Rügamer

Prof. Dr.

Statistics, Data Science and Machine Learning

Link to Profile Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning and Data Science


18.07.2022


Subscribe to RSS News feed

Related

Link to Niki Kilbertus Receives Prestigious ERC Starting Grant

08.09.2025

Niki Kilbertus Receives Prestigious ERC Starting Grant

Niki Kilbertus wins ERC Starting Grant for his DYNAMICAUS project on causal AI and scientific modeling.

Link to 3D Machine Perception Beyond Vision - with researcher Riccardo Marin

08.09.2025

3D Machine Perception Beyond Vision - With Researcher Riccardo Marin

Researcher Riccardo Marin explores 3D geometry and AI, from manufacturing to VR, making machine perception more human-like.

Link to AI for Personalized Psychiatry - with researcher Clara Vetter

01.09.2025

AI for Personalized Psychiatry - With Researcher Clara Vetter

AI research by Clara Vetter uses brain, genetic and smartphone data to personalize psychiatry and improve diagnosis and treatment.

Link to Satellite Insights for a Sustainable Future - with researcher Ivica Obadic

25.08.2025

Satellite Insights for a Sustainable Future - With Researcher Ivica Obadic

AI from satellite imagery helps design livable cities, improve well-being & food systems with transparent models by Ivica Obadić.

Link to Mingyang Wang receives Award at ACL 2025

18.08.2025

Mingyang Wang Receives Award at ACL 2025

MCML Junior Member Mingyang Wang wins SAC Highlights Award at ACL 2025 for research on cross-lingual consistency in language models.