18.07.2022

Teaser image to

MCML Researchers With Three Papers at IJCAI-ECAI 2022

31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI-ECAI 2022). Vienna, Austria, 23.07.2022–29.07.2022

We are happy to announce that MCML researchers are represented with three papers at IJCAI-ECAI 2022. Congrats to our researchers!

Main Track (2 papers)

M. Ali, M. Berrendorf, M. Galkin, V. Thost, T. Ma, V. Tresp and J. Lehmann.
Improving Inductive Link Prediction Using Hyper-Relational Facts (Extended Abstract).
IJCAI-ECAI 2022 - Best paper track at the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence. Vienna, Austria, Jul 23-29, 2022. DOI
Abstract

For many years, link prediction on knowledge graphs (KGs) has been a purely transductive task, not allowing for reasoning on unseen entities. Recently, increasing efforts are put into exploring semi- and fully inductive scenarios, enabling inference over unseen and emerging entities. Still, all these approaches only consider triple-based KGs, whereas their richer counterparts, hyper-relational KGs (e.g., Wikidata), have not yet been properly studied. In this work, we classify different inductive settings and study the benefits of employing hyper-relational KGs on a wide range of semi- and fully inductive link prediction tasks powered by recent advancements in graph neural networks. Our experiments on a novel set of benchmarks show that qualifiers over typed edges can lead to performance improvements of 6% of absolute gains (for the Hits@10 metric) compared to triple-only baselines.

MCML Authors
Max Berrendorf

Max Berrendorf

Dr.

* Former Member

Link to Profile Volker Tresp

Volker Tresp

Prof. Dr.

Database Systems and Data Mining


E. Schede, J. Brandt, A. Tornede, M. Wever, V. Bengs, E. Hüllermeier and K. Tierney.
A Survey of Methods for Automated Algorithm Configuration.
IJCAI-ECAI 2022 - 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence. Vienna, Austria, Jul 23-29, 2022. Extended Abstract. DOI
Abstract

Algorithm configuration (AC) is concerned with the automated search of the most suitable parameter configuration of a parametrized algorithm. There is currently a wide variety of AC problem variants and methods proposed in the literature. Existing reviews do not take into account all derivatives of the AC problem, nor do they offer a complete classification scheme. To this end, we introduce taxonomies to describe the AC problem and features of configuration methods, respectively. We review existing AC literature within the lens of our taxonomies, outline relevant design choices of configuration approaches, contrast methods and problem variants against each other, and describe the state of AC in industry. Finally, our review provides researchers and practitioners with a look at future research directions in the field of AC.

MCML Authors
Link to Profile Eyke Hüllermeier

Eyke Hüllermeier

Prof. Dr.

Artificial Intelligence and Machine Learning


Workshops (1 papers)

A. Klaß, S. M. Lorenz, M. W. Lauer-Schmaltz, D. Rügamer, B. Bischl, C. Mutschler and F. Ott.
Uncertainty-aware Evaluation of Time-Series Classification for Online Handwriting Recognition with Domain Shift.
STRL @IJCAI-ECAI 2022 - Workshop on Spatio-Temporal Reasoning and Learning at the 31st International Joint Conference on Artificial Intelligence and the 25th European Conference on Artificial Intelligence (IJCAI-ECAI 2022). Vienna, Austria, Jul 23-29, 2022. URL
Abstract

For many applications, analyzing the uncertainty of a machine learning model is indispensable. While research of uncertainty quantification (UQ) techniques is very advanced for computer vision applications, UQ methods for spatio-temporal data are less studied. In this paper, we focus on models for online handwriting recognition, one particular type of spatio-temporal data. The data is observed from a sensor-enhanced pen with the goal to classify written characters. We conduct a broad evaluation of aleatoric (data) and epistemic (model) UQ based on two prominent techniques for Bayesian inference, Stochastic Weight Averaging-Gaussian (SWAG) and Deep Ensembles. Next to a better understanding of the model, UQ techniques can detect out-of-distribution data and domain shifts when combining right-handed and left-handed writers (an underrepresented group).

MCML Authors
Link to Profile David Rügamer

David Rügamer

Prof. Dr.

Statistics, Data Science and Machine Learning

Link to Profile Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning and Data Science


18.07.2022


Subscribe to RSS News feed

Related

Link to Yusuf Sale receives IJAR Young Researcher Award

30.07.2025

Yusuf Sale Receives IJAR Young Researcher Award

MCML Junior Member Yusuf Sale received an IJAR Young Researcher Award at ISIPTA 2025 for his work.

Link to Barbara Plank awarded 2025 Imminent Research Grant for work on language data

30.07.2025

Barbara Plank Awarded 2025 Imminent Research Grant for Work on Language Data

Barbara Plank’s MaiNLP lab wins 2025 Imminent Research Grant for a project on language data with Peng and de Marneffe.

Link to Tracking Our Changing Planet from Space - with Xiaoxiang Zhu

30.07.2025

Tracking Our Changing Planet From Space - With Xiaoxiang Zhu

In this video, Xiaoxiang Zhu shares how her team extracts geo-information from petabytes of data, with real impact on global challenges.

Link to AI research by Daniel Rückert improves medical imaging and data privacy

29.07.2025

AI Research by Daniel Rückert Improves Medical Imaging and Data Privacy

Daniel Rückert develops AI for faster medical imaging and secure data use through federated learning and privacy-preserving methods.

Link to AI for Enhanced Eye Diagnostics - with researcher Lucie Huang

29.07.2025

AI for Enhanced Eye Diagnostics - With Researcher Lucie Huang

Lucie Huang develops AI for faster eye scans and earlier diagnoses, featured in a new KI Trans video on real-world AI impact.