02.01.2022

Teaser image to

MCML Researchers With One Paper at WACV 2022

EEE/CVF Winter Conference on Applications of Computer Vision (WACV 2022). Waikoloa, Hawai, 04.01.2022–08.01.2022

We are happy to announce that MCML researchers are represented with one paper at WACV 2022. Congrats to our researchers!

Main Track (1 papers)

F. Ott, D. Rügamer, L. Heublein, B. Bischl and C. Mutschler.
Joint Classification and Trajectory Regression of Online Handwriting Using a Multi-Task Learning Approach.
WACV 2022 - IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, Hawaii, Jan 04-08, 2022. DOI
Abstract

Multivariate Time Series (MTS) classification is important in various applications such as signature verification, person identification, and motion recognition. In deep learning these classification tasks are usually learned using the cross-entropy loss. A related yet different task is predicting trajectories observed as MTS. Important use cases include handwriting reconstruction, shape analysis, and human pose estimation. The goal is to align an arbitrary dimensional time series with its ground truth as accurately as possible while reducing the error in the prediction with a distance loss and the variance with a similarity loss. Although learning both losses with Multi-Task Learning (MTL) helps to improve trajectory alignment, learning often remains difficult as both tasks are contradictory. We propose a novel neural network architecture for MTL that notably improves the MTS classification and trajectory regression performance in online handwriting (OnHW) recognition. We achieve this by jointly learning the cross-entropy loss in combination with distance and similarity losses. On an OnHW task of handwritten characters with multivariate inertial and visual data inputs we are able to achieve crucial improvements (lower error with less variance) of trajectory prediction while still improving the character classification accuracy in comparison to models trained on the individual tasks.

MCML Authors
Link to Profile David Rügamer

David Rügamer

Prof. Dr.

Statistics, Data Science and Machine Learning

Link to Profile Bernd Bischl

Bernd Bischl

Prof. Dr.

Statistical Learning and Data Science


02.01.2022


Subscribe to RSS News feed

Related

Link to AI for Personalized Psychiatry - with researcher Clara Vetter

01.09.2025

AI for Personalized Psychiatry - With Researcher Clara Vetter

AI research by Clara Vetter uses brain, genetic and smartphone data to personalize psychiatry and improve diagnosis and treatment.

Link to Satellite Insights for a Sustainable Future - with researcher Ivica Obadic

25.08.2025

Satellite Insights for a Sustainable Future - With Researcher Ivica Obadic

AI from satellite imagery helps design livable cities, improve well-being & food systems with transparent models by Ivica Obadić.

Link to Mingyang Wang receives Award at ACL 2025

18.08.2025

Mingyang Wang Receives Award at ACL 2025

MCML Junior Member Mingyang Wang wins SAC Highlights Award at ACL 2025 for research on cross-lingual consistency in language models.

Link to Digital Twins for Surgery - with researcher Azade Farshad

18.08.2025

Digital Twins for Surgery - With Researcher Azade Farshad

Azade Farshad develops patient digital twins at TUM & MCML to improve personalized treatment, surgical planning, and training.

Link to From Physics Dreams to Algorithm Discovery - with Niki Kilbertus

13.08.2025

From Physics Dreams to Algorithm Discovery - With Niki Kilbertus

Niki Kilbertus develops AI algorithms to uncover cause and effect, making science smarter and decisions in fields like medicine more reliable.