15.03.2021

Teaser image to

MCML at ECIR 2021: Three Accepted Papers

43rd European Conference on Information Retrieval (ECIR 2021). Virtual, 28.03.2021–01.04.2021

We are happy to announce that MCML researchers have contributed a total of 3 papers to ECIR 2021. Congrats to our researchers!

Main Track (3 papers)

M. Berrendorf, E. Faerman and V. Tresp.
Active Learning for Entity Alignment.
ECIR 2021 - 43rd European Conference on Information Retrieval. Virtual, Mar 28-Apr 01, 2021. DOI GitHub
Abstract

In this work, we propose a novel framework for labeling entity alignments in knowledge graph datasets. Different strategies to select informative instances for the human labeler build the core of our framework. We illustrate how the labeling of entity alignments is different from assigning class labels to single instances and how these differences affect the labeling efficiency. Based on these considerations, we propose and evaluate different active and passive learning strategies. One of our main findings is that passive learning approaches, which can be efficiently precomputed, and deployed more easily, achieve performance comparable to the active learning strategies.

MCML Authors
Link to Profile Volker Tresp

Volker Tresp

Prof. Dr.

Principal Investigator


M. Berrendorf, L. Wacker and E. Faerman.
A Critical Assessment of State-of-the-Art in Entity Alignment.
ECIR 2021 - 43rd European Conference on Information Retrieval. Virtual, Mar 28-Apr 01, 2021. DOI GitHub
Abstract

In this work, we perform an extensive investigation of two state-of-the-art (SotA) methods for the task of Entity Alignment in Knowledge Graphs. Therefore, we first carefully examine the benchmarking process and identify several shortcomings, making the results reported in the original works not always comparable. Furthermore, we suspect that it is a common practice in the community to make the hyperparameter optimization directly on a test set, reducing the informative value of reported performance. Thus, we select a representative sample of benchmarking datasets and describe their properties. We also examine different initializations for entity representations since they are a decisive factor for model performance. Furthermore, we use a shared train/validation/test split for an appropriate evaluation setting to evaluate all methods on all datasets. In our evaluation, we make several interesting findings. While we observe that most of the time SotA approaches perform better than baselines, they have difficulties when the dataset contains noise, which is the case in most real-life applications. Moreover, in our ablation study, we find out that often different features of SotA method are crucial for good performance than previously assumed.

MCML Authors

M. Fromm, M. Berrendorf, S. Obermeier, T. Seidl and E. Faerman.
Diversity Aware Relevance Learning for Argument Search.
ECIR 2021 - 43rd European Conference on Information Retrieval. Virtual, Mar 28-Apr 01, 2021. DOI GitHub
Abstract

In this work, we focus on the problem of retrieving relevant arguments for a query claim covering diverse aspects. State-of-the-art methods rely on explicit mappings between claims and premises, and thus are unable to utilize large available collections of premises without laborious and costly manual annotation. Their diversity approach relies on removing duplicates via clustering which does not directly ensure that the selected premises cover all aspects. This work introduces a new multi-step approach for the argument retrieval problem. Rather than relying on ground-truth assignments, our approach employs a machine learning model to capture semantic relationships between arguments. Beyond that, it aims to cover diverse facets of the query, instead of trying to identify duplicates explicitly. Our empirical evaluation demonstrates that our approach leads to a significant improvement in the argument retrieval task even though it requires less data.

MCML Authors

#research #top-tier-work #seidl #tresp
Subscribe to RSS News feed

Related

Link to Rethinking AI in Public Institutions - Balancing Prediction and Capacity

09.10.2025

Rethinking AI in Public Institutions - Balancing Prediction and Capacity

Unai Fischer Abaigar explores how AI can make public decisions fairer, smarter, and more effective.

Link to MCML-LAMARR Workshop at University of Bonn

08.10.2025

MCML-LAMARR Workshop at University of Bonn

MCML and Lamarr researchers met in Bonn to exchange ideas on NLP, LLM finetuning, and AI ethics.

Link to Three MCML Members Win Best Paper Award at AutoML 2025

08.10.2025

Three MCML Members Win Best Paper Award at AutoML 2025

MCML PI Matthias Feurer and Director Bernd Bischl’s paper on overtuning won Best Paper at AutoML 2025, offering insights for robust HPO.

Link to Machine Learning for Climate Action - with researcher Kerstin Forster

29.09.2025

Machine Learning for Climate Action - With Researcher Kerstin Forster

Kerstin Forster researches how AI can cut emissions, boost renewable energy, and drive corporate sustainability.

Link to Making Machine Learning More Accessible with AutoML

26.09.2025

Making Machine Learning More Accessible With AutoML

Matthias Feurer discusses AutoML, hyperparameter optimization, OpenML, and making machine learning more accessible and efficient for researchers.

Back to Top