15.10.2020

Teaser image to Invited presentation at 1st CIKM 2020 Workshop on Combining Symbolic and Sub-symbolic Methods and their Applications (CSSA-CIKM 2020)

Invited Presentation at 1st CIKM 2020 Workshop on Combining Symbolic and Sub-Symbolic Methods and Their Applications (CSSA-CIKM 2020)

Learning With Temporal Knowledge Graphs

MCML PI Volker Tresp, Yunpu Ma and Zhen Han review recently developed learning-based algorithms for temporal knowledge graphs completion and forecasting. Knowledge graphs, also known as episodic or time-dependent knowledge graphs are large-scale event databases that describe temporally evolving multi-relational data.

#research #tresp
Subscribe to RSS News feed

Related

Link to Rethinking AI in Public Institutions - Balancing Prediction and Capacity

09.10.2025

Rethinking AI in Public Institutions - Balancing Prediction and Capacity

Unai Fischer Abaigar explores how AI can make public decisions fairer, smarter, and more effective.

Link to MCML-LAMARR Workshop at University of Bonn

08.10.2025

MCML-LAMARR Workshop at University of Bonn

MCML and Lamarr researchers met in Bonn to exchange ideas on NLP, LLM finetuning, and AI ethics.

Link to Three MCML Members Win Best Paper Award at AutoML 2025

08.10.2025

Three MCML Members Win Best Paper Award at AutoML 2025

MCML PI Matthias Feurer and Director Bernd Bischl’s paper on overtuning won Best Paper at AutoML 2025, offering insights for robust HPO.

Link to Machine Learning for Climate Action - with researcher Kerstin Forster

29.09.2025

Machine Learning for Climate Action - With Researcher Kerstin Forster

Kerstin Forster researches how AI can cut emissions, boost renewable energy, and drive corporate sustainability.

Link to Making Machine Learning More Accessible with AutoML

26.09.2025

Making Machine Learning More Accessible With AutoML

Matthias Feurer discusses AutoML, hyperparameter optimization, OpenML, and making machine learning more accessible and efficient for researchers.

Back to Top