29.07.2020

Teaser image to MCML - Virtual workshop

MCML - Virtual Workshop

Over 20 Presentations by Our PhD Students on Current Research Topics

The workshop includes presentations on Spatial and Temporal Machine Learning & Computer Vision, Learning on Graphs and Networks & Representation Learning, and Automatic and Explainable Modeling & Computational Models for Large-Sclae ML.

Agenda

Welcome

2:00 pm – 2:20 pm

Welcome Greeting

Prof. Dr. Thomas Seidl, Prof. Dr. Daniel Cremers


Track 1: Spatial and Temporal Machine Learning & Computer Vision

2:20 pm – 2:40 pm

Machine Learning at CAMP: Interpretability and Spatio-temporal Learning for Medical Imaging

Ashkan Khakzar, Azade Farshad / Prof. Dr. Nassir Navab


2:40 pm – 3:00 pm

Bayesian image segmentation with hierarchical Potts models

Christopher Küster / Prof. Dr. Volker Schmid


3:00 pm – 3:20 pm

Resource Search in Data Driven Environments

Prof. Dr. Matthias Schubert


3:20 pm – 3:40 pm

Learning a neural solver for multi-object tracking

Guillem Brasó / Prof. Dr. Laura Leal-Taixé


3:20 pm – 3:40 pm

Learning a neural solver for multi-object tracking

Guillem Brasó / Prof. Dr. Laura Leal-Taixé


3:40 pm – 4:00 pm

Deep learning: a non-alchemical view

Yuesong Shen / Prof. Dr. Daniel Cremers


4:00 pm – 4:20 pm

Equivariant Deep Learning

Vladimir Golkov, / Prof. Dr. Daniel Cremers


4:20 pm – 4:40 pm

Learning to Optimize for Human Reconstructions

Andrei Burov / Prof. Dr. Matthias Niessner


Track 2: Learning on Graphs and Networks & Representation Learning

2:20 pm – 2:40 pm

Robust deep learning on graphs

Daniel Zügner / Prof. Dr. Stephan Günnemann


2:40 pm – 3:00 pm

Applied Network Science

Cornelius Fritz, Marc Schneble, Sevag Kevork / Prof. Dr. Göran Kauermann


3:00 pm – 3:20 pm

Knowledge Graph Matching

Max Berrendorf / Prof. Dr. Volker Tresp


3:20 pm – 3:40 pm

Measurement Dependence Inducing Latent Causal Models

Alex Markham / Prof. Dr. Moritz Grosse-Wentrup


3:40 pm – 4:00 pm

Negated and Misprimed Probes for Pretrained Language Models: Birds Can Talk, But Cannot Fly

Nora Kassner / Prof. Dr. Hinrich Schütze


4:00 pm – 4:20 pm

Query to reference single-cell integration with transfer learning

Mohammad Lotfollahi / Prof. Dr. Dr. Fabian Theis


4:20 pm – 4:40 pm

Mapping the fate of single cells with RNA velocity using CellRank

Marius Lange / Prof. Dr. Dr. Fabian Theis


Track 3: Automatic and Explainable Modeling & Computational Models for Large-Scale ML

2:20 pm – 2:40 pm

Semi-Structured Deep Distributional Regression

Dr. David Rügamer / Prof. Dr. Bernd Bischl


2:40 pm – 3:00 pm

Multi-Objective Hyperparameter Tuning and Feature Selection using Filter Ensembles

Julia Moosbauer, Martin Binder / Prof. Dr. Bernd Bischl


3:00 pm – 3:20 pm

Cluster Analysis and Feature Rankings: Validation, benchmarking and over-optimism concerns

Theresa Ullmann, Christina Nießl / Prof. Dr. Anne-Laure Boulesteix


3:20 pm – 3:40 pm

Finding and evaluating embeddings for functional data

Moritz Herrmann / PD Dr. Fabian Scheipl


3:40 pm – 4:00 pm

Clustering Large-Scaled Datasets using Deep Learning

Li Qian / Prof. Dr. Christian Böhm


4:00 pm – 4:20 pm

Evaluation of Results from Unsupervised Learning Processes

Anna Beer / Prof. Dr. Peer Kröger


4:20 pm – 4:40 pm

Recent Advances in Correlation Clustering

Daniyal Kazempour / Prof. Dr. Thomas Seidl


4:40 pm – 5:00 pm

Active Learning - Diversity vs. Uncertainty Sampling

Sandra Obermeier / Prof. Dr. Thomas Seidl


Closing

5:00 pm – 5:30 pm

Closing Remarks

Prof. Dr. Bernd Bischl


#event #research
Subscribe to RSS News feed

Related

Link to Rethinking AI in Public Institutions - Balancing Prediction and Capacity

09.10.2025

Rethinking AI in Public Institutions - Balancing Prediction and Capacity

Unai Fischer Abaigar explores how AI can make public decisions fairer, smarter, and more effective.

Link to MCML-LAMARR Workshop at University of Bonn

08.10.2025

MCML-LAMARR Workshop at University of Bonn

MCML and Lamarr researchers met in Bonn to exchange ideas on NLP, LLM finetuning, and AI ethics.

Link to Three MCML Members Win Best Paper Award at AutoML 2025

08.10.2025

Three MCML Members Win Best Paper Award at AutoML 2025

MCML PI Matthias Feurer and Director Bernd Bischl’s paper on overtuning won Best Paper at AutoML 2025, offering insights for robust HPO.

Link to Machine Learning for Climate Action - with researcher Kerstin Forster

29.09.2025

Machine Learning for Climate Action - With Researcher Kerstin Forster

Kerstin Forster researches how AI can cut emissions, boost renewable energy, and drive corporate sustainability.

Link to Making Machine Learning More Accessible with AutoML

26.09.2025

Making Machine Learning More Accessible With AutoML

Matthias Feurer discusses AutoML, hyperparameter optimization, OpenML, and making machine learning more accessible and efficient for researchers.

Back to Top