Home  | News

30.10.2025

Teaser image to Language Shapes Gender Bias in AI Images

Language Shapes Gender Bias in AI Images

TUM News

Alexander Fraser, MCML PI, and his team discovered that AI image generators reproduce gender stereotypes differently across languages. In their study of nine languages, they found that generic prompts like “accountant” mostly produced male images, while explicitly feminine or neutral prompts reduced bias but sometimes affected image quality.

The study highlights that AI is not language‑agnostic and careful wording can influence outcomes, underlining the need for fairness and multilingual awareness in AI systems.

#research #fraser
Subscribe to RSS News feed

Related

Link to

19.01.2026

MCML at AAAI 2026

MCML researchers are represented with 9 papers at AAAI 2026 (6 Main, and 3 Workshops).

Link to MCML PI Frauke Kreuter Featured on ARD alpha on AI

19.01.2026

MCML PI Frauke Kreuter Featured on ARD Alpha on AI

MCML PI Frauke Kreuter featured on ARD alpha discussing AI in daily life, workplace applications, and responsible, future-ready use.

Link to Blind Matching – Aligning Images and Text Without Training or Labels

15.01.2026

Blind Matching – Aligning Images and Text Without Training or Labels

CVPR 2025 research from Daniel Cremers’ group shows how images and text can be aligned without training data, labels, or paired examples.

Link to MCML PIs Featured in Süddeutsche Zeitung

12.01.2026

MCML PIs Featured in Süddeutsche Zeitung

MCML PIs Xiaoxiang Zhu and Felix Dietrich featured in Süddeutsche Zeitung for TU Munich’s 2025 breakthroughs in AI and data science.

Link to High-Res Images, Less Wait: A Simple Flow for Image Generation

08.01.2026

High-Res Images, Less Wait: A Simple Flow for Image Generation

ECCV 2024 research led by Björn Ommer’s team enables faster high-resolution image generation by boosting diffusion models with flow matching.

Back to Top