26.10.2025
Unai Fischer-Abaigar Featured on Executive Code
AI Prediction and Its Impact on Government Resource Allocation
MCML Junior Member Unai Fischer-Abaigar, was featured in a recent episode of Executive Code. He discussed his paper “The Value of Prediction in Identifying the Worst-Off”, exploring how governments use AI to allocate limited resources and when improving predictive models is more effective than simply expanding access to public programs. Using real data from Germany’s employment offices, his research challenges the assumption that better prediction always leads to better outcomes in public decision-making.
Related
05.02.2026
Needle in a Haystack: Finding Exact Moments in Long Videos
ECCV 2024 research introduces RGNet, an AI model that finds exact moments in long videos using unified retrieval and grounding.
04.02.2026
Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”
Benjamin Busam leads the scientific design of the “CuBy” satellite network, delivering AI-ready Earth observation data for Bavaria.
©Florian Generotzky / LMU
30.01.2026
Cracks in the Foundations of Cosmology
Daniel Grün examines cosmological tensions that challenge the Standard Model and may point toward new physics.