Home  | News

26.10.2025

Teaser image to Unai Fischer-Abaigar Featured on Executive Code

Unai Fischer-Abaigar Featured on Executive Code

AI Prediction and Its Impact on Government Resource Allocation

MCML Junior Member Unai Fischer-Abaigar, was featured in a recent episode of Executive Code. He discussed his paper "The Value of Prediction in Identifying the Worst-Off", exploring how governments use AI to allocate limited resources and when improving predictive models is more effective than simply expanding access to public programs. Using real data from Germany’s employment offices, his research challenges the assumption that better prediction always leads to better outcomes in public decision-making.

#media #research #kern
Subscribe to RSS News feed

Related

Link to Zigzag Your Way to Faster, Smarter AI Image Generation

20.11.2025

Zigzag Your Way to Faster, Smarter AI Image Generation

ZigMa, introduced by Björn Ommer’s group at ECCV 24, improves high-res AI image and video generation with fast, memory-efficient zigzag scanning.

Link to Anne-Laure Boulesteix Among the World’s Most Cited Researchers

13.11.2025

Anne-Laure Boulesteix Among the World’s Most Cited Researchers

MCML PI Anne‑Laure Boulesteix named Highly Cited Researcher 2025 for cross-field work, among 17 LMU scholars recognized globally.

Link to Björn Ommer Featured in Frankfurter Rundschau

13.11.2025

Björn Ommer Featured in Frankfurter Rundschau

Björn Ommer highlights how Google’s new AI search mode impacts publishers, content visibility, and the diversity of online information.

Link to Fabian Theis Among the World’s Most Cited Researchers

13.11.2025

Fabian Theis Among the World’s Most Cited Researchers

Fabian Theis is named a Highly Cited Researcher 2025 for his work in mathematical modeling of biological systems.

Link to Explaining AI Decisions: Shapley Values Enable Smart Exosuits

13.11.2025

Explaining AI Decisions: Shapley Values Enable Smart Exosuits

AI meets wearable robotics: MCML and Harvard researchers make exosuits smarter and safer with explainable optimization, presented at ECML-PKDD 2025.

Back to Top