08.09.2025
3D Machine Perception Beyond Vision - With Researcher Riccardo Marin
Research Film
Can AI understand the world in 3D the way we do? Riccardo Marin, researcher at TUM and MCML, works at the intersection of computer vision and 3D geometry to teach machines how to perceive shapes, patterns, and spatial structures. His work ranges from detecting production flaws in manufacturing to analyzing archaeological artifacts – showing how understanding shape goes far beyond simple image recognition.
Riccardo also studies the geometry of the human body, with applications in fashion, sports, surgery, and the design of prosthetics that move naturally. This research supports virtual and augmented reality, enabling trustworthy and realistic digital representations of ourselves. By giving AI a sense of space and form, his work brings machine perception closer to human experience.
This video is part of the project KI Trans, an initiative in collaboration with TüftelLab and Uta Hauck-Thum from Ludwig-Maximilians-Universität München, focused on equipping teachers with the essential skills to navigate AI in schools. The project is funded by the Bundesministerium für Forschung, Technologie und Raumfahrt as part of DATIpilot.
©MCML
Related
18.12.2025
"See, Don’t Assume": Revealing and Reducing Gender Bias in AI
ICLR 2025 research led by Zeynep Akata’s team reveals and reduces gender bias in popular vision-language AI models.
16.12.2025
Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine
MCML PI Fabian Theis discusses AI-driven precision medicine and its growing impact on individualized healthcare and biomedical research.
16.12.2025
Gitta Kutyniok Featured in VDI Nachrichten on AI Ethics
Gitta Kutyniok discusses measurable criteria for ethical AI, promoting safe and responsible autonomous decision-making.
16.12.2025
Hinrich Schütze Featured in WirtschaftsWoche on Innovative AI Approaches
Hinrich Schütze discusses Giotto.ai’s efficient AI models, highlighting memory separation and context-aware decoding to improve robustness.