30.07.2025
Tracking Our Changing Planet From Space - With Xiaoxiang Zhu
Research Film
From dreaming of seeing the Earth from space to leading efforts to understand our planet using AI and satellite data to tackle urgent global challenges. Xiaoxiang Zhu, Chair Professor for Data Science in Earth Observation at TUM and PI at MCML, develops machine learning systems that analyze petabytes of satellite imagery. Her work focuses on extracting reliable geo-information from raw data, especially in places where data is scarce or misleading.
In this video, Xiaoxiang Zhu explains how her team segments informal settlements across the Global South and estimates population density using building height and function. These tools help close critical knowledge gaps, particularly in regions where poverty is underrepresented in current datasets.
Her aim is to turn complex remote sensing data into actionable insights for addressing urbanization, climate change, and the UN’s Sustainable Development Goals. By combining technical innovation with social impact, her work shows how AI can help us better understand — and improve — life on Earth.
©MCML
The film was produced and edited by Nicole Huminski and Nikolai Huber.
Related
08.01.2026
High-Res Images, Less Wait: A Simple Flow for Image Generation
ECCV 2024 research led by Björn Ommer’s team enables faster high-resolution image generation by boosting diffusion models with flow matching.
©Joachim Wendler - stock-adobe.com
02.01.2026
MCML Researchers in Highly-Ranked Journals
We are excited to announce that MCML researchers have four papers published in highly-ranked journals in 2026.
18.12.2025
"See, Don’t Assume": Revealing and Reducing Gender Bias in AI
ICLR 2025 research led by Zeynep Akata’s team reveals and reduces gender bias in popular vision-language AI models.
16.12.2025
Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine
MCML PI Fabian Theis discusses AI-driven precision medicine and its growing impact on individualized healthcare and biomedical research.