30.07.2025

Tracking Our Changing Planet From Space - With Xiaoxiang Zhu
Research Film
From dreaming of seeing the Earth from space to leading efforts to understand our planet using AI and satellite data to tackle urgent global challenges. Xiaoxiang Zhu, Chair Professor for Data Science in Earth Observation at TUM and PI at MCML, develops machine learning systems that analyze petabytes of satellite imagery. Her work focuses on extracting reliable geo-information from raw data, especially in places where data is scarce or misleading.
In this video, Xiaoxiang Zhu explains how her team segments informal settlements across the Global South and estimates population density using building height and function. These tools help close critical knowledge gaps, particularly in regions where poverty is underrepresented in current datasets.
Her aim is to turn complex remote sensing data into actionable insights for addressing urbanization, climate change, and the UN’s Sustainable Development Goals. By combining technical innovation with social impact, her work shows how AI can help us better understand — and improve — life on Earth.
©MCML
The film was produced and edited by Nicole Huminski and Nikolai Huber.
#blog #research #zhu
Related

17.10.2025
MCML at ICCV 2025: 19 Accepted Papers (16 Main, and 3 Workshops)
IEEE/CVF International Conference on Computer Vision (ICCV 2025). Honolulu, Hawaii, 19.10.2025 - 23.10.2025

16.10.2025
SIC: Making AI Image Classification Understandable
SIC by the team of Christian Wachinger at ICCV 2025: Transparent AI for intuitive, reliable, and interpretable medical image classification.

09.10.2025
Rethinking AI in Public Institutions - Balancing Prediction and Capacity
Unai Fischer Abaigar explores how AI can make public decisions fairer, smarter, and more effective.

08.10.2025
MCML-LAMARR Workshop at University of Bonn
MCML and Lamarr researchers met in Bonn to exchange ideas on NLP, LLM finetuning, and AI ethics.