29.07.2025

Teaser image to AI research by Daniel Rückert improves medical imaging and data privacy

AI Research by Daniel Rückert Improves Medical Imaging and Data Privacy

TUM News Article

MCML Director Daniel Rückert and his team are developing AI technologies to improve diagnostic imaging and protect patient data. Their research includes federated learning approaches that allow models to learn from clinical data without sharing sensitive information, as well as privacy-enhancing techniques like added data noise.

Their methods are already being applied in MRI and CT systems, leading to shorter exam times and more accurate diagnostics. The work is a key step toward integrating trustworthy AI into daily clinical practice.


Subscribe to RSS News feed

Related

Link to Machine Learning for Climate Action - with researcher Kerstin Forster

29.09.2025

Machine Learning for Climate Action - With Researcher Kerstin Forster

Kerstin Forster researches how AI can cut emissions, boost renewable energy, and drive corporate sustainability.

Link to Björn Ommer featured in WELT

26.09.2025

Björn Ommer Featured in WELT

MCML PI Björn Ommer told WELT that AI can never be entirely neutral and that human judgment remains essential.

Link to Björn Schuller featured in Macwelt article

25.09.2025

Björn Schuller Featured in Macwelt Article

MCML PI Björn Schuller discusses in Macwelt how Apple Watch monitors health, detects subtle changes, and supports early intervention.

Link to MCML PI Björn Ommer featured on ZDF NANO Talk

24.09.2025

MCML PI Björn Ommer Featured on ZDF NANO Talk

MCML PIs Björn Ommer & Alena Buyx discuss AI’s essence on ZDF NANO Talk, covering tech, ethics, and societal impact.

Link to Benjamin Lange Explores Opportunities and Risks of AI Agents

23.09.2025

Benjamin Lange Explores Opportunities and Risks of AI Agents

Benjamin Lange highlights both opportunities and ethical risks of AI agents and calls for clear rules to ensure they benefit society.

Back to Top