29.07.2025
©TUM
AI Research by Daniel Rückert Improves Medical Imaging and Data Privacy
TUM News
MCML Director Daniel Rückert and his team are developing AI technologies to improve diagnostic imaging and protect patient data. Their research includes federated learning approaches that allow models to learn from clinical data without sharing sensitive information, as well as privacy-enhancing techniques like added data noise.
Their methods are already being applied in MRI and CT systems, leading to shorter exam times and more accurate diagnostics. The work is a key step toward integrating trustworthy AI into daily clinical practice.
Related
08.01.2026
High-Res Images, Less Wait: A Simple Flow for Image Generation
ECCV 2024 research led by Björn Ommer’s team enables faster high-resolution image generation by boosting diffusion models with flow matching.
©Joachim Wendler - stock-adobe.com
02.01.2026
MCML Researchers in Highly-Ranked Journals
We are excited to announce that MCML researchers have four papers published in highly-ranked journals in 2026.
18.12.2025
"See, Don’t Assume": Revealing and Reducing Gender Bias in AI
ICLR 2025 research led by Zeynep Akata’s team reveals and reduces gender bias in popular vision-language AI models.
16.12.2025
Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine
MCML PI Fabian Theis discusses AI-driven precision medicine and its growing impact on individualized healthcare and biomedical research.