Home  | News

29.07.2025

Teaser image to AI research by Daniel Rückert improves medical imaging and data privacy

AI Research by Daniel Rückert Improves Medical Imaging and Data Privacy

TUM News

MCML Director Daniel Rückert and his team are developing AI technologies to improve diagnostic imaging and protect patient data. Their research includes federated learning approaches that allow models to learn from clinical data without sharing sensitive information, as well as privacy-enhancing techniques like added data noise.

Their methods are already being applied in MRI and CT systems, leading to shorter exam times and more accurate diagnostics. The work is a key step toward integrating trustworthy AI into daily clinical practice.

#research #rueckert
Subscribe to RSS News feed

Related

Link to High-Res Images, Less Wait: A Simple Flow for Image Generation

08.01.2026

High-Res Images, Less Wait: A Simple Flow for Image Generation

ECCV 2024 research led by Björn Ommer’s team enables faster high-resolution image generation by boosting diffusion models with flow matching.

Link to

02.01.2026

MCML Researchers in Highly-Ranked Journals

We are excited to announce that MCML researchers have four papers published in highly-ranked journals in 2026.

Link to "See, Don’t Assume": Revealing and Reducing Gender Bias in AI

18.12.2025

"See, Don’t Assume": Revealing and Reducing Gender Bias in AI

ICLR 2025 research led by Zeynep Akata’s team reveals and reduces gender bias in popular vision-language AI models.

Link to Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine

16.12.2025

Fabian Theis Featured in Handelsblatt on the Future of AI in Precision Medicine

MCML PI Fabian Theis discusses AI-driven precision medicine and its growing impact on individualized healthcare and biomedical research.

Link to Gitta Kutyniok Featured in VDI Nachrichten on AI Ethics

16.12.2025

Gitta Kutyniok Featured in VDI Nachrichten on AI Ethics

Gitta Kutyniok discusses measurable criteria for ethical AI, promoting safe and responsible autonomous decision-making.

Back to Top