25.06.2025
When Clinical Expertise Meets AI Innovation – With Michael Ingrisch
Research Film
Artificial intelligence has enormous potential in radiology — but realizing it requires more than good algorithms.
Michael Ingrisch, Clinical Data Science Professor at LMU and MCML PI, shares how his team took a practical approach: identifying a key diagnostic challenge in PET CT imaging and inviting the broader AI community to help solve it.
«Only if we understand both fields, AI and radiology, we can identify and map strategies to solve problems that actually need solving.»
Michael Ingrisch
MCML PI
Through an open machine learning competition, participants used real clinical data to train models for tumor segmentation. The results were tested on unseen data, with the winning solution demonstrating not just technical skill — but clinical relevance.
Ingrisch highlights the importance of interdisciplinary collaboration: without it, even the best models risk solving the wrong problems. His team is working to ensure the next generation of AI tools is not only cutting-edge — but aligned with the real needs of clinicians and patients.
This video is part of our MCML spotlight series on researchers driving AI forward through real-world impact.
©MCML
The film was produced and edited by Nicole Huminski and Nikolai Huber.
Related
05.02.2026
Needle in a Haystack: Finding Exact Moments in Long Videos
ECCV 2024 research introduces RGNet, an AI model that finds exact moments in long videos using unified retrieval and grounding.
04.02.2026
Benjamin Busam Leads Design of Bavarian Earth Observation Satellite Network “CuBy”
Benjamin Busam leads the scientific design of the “CuBy” satellite network, delivering AI-ready Earth observation data for Bavaria.
©Florian Generotzky / LMU
30.01.2026
Cracks in the Foundations of Cosmology
Daniel Grün examines cosmological tensions that challenge the Standard Model and may point toward new physics.