25.06.2025
When Clinical Expertise Meets AI Innovation – With Michael Ingrisch
Research Film
Artificial intelligence has enormous potential in radiology — but realizing it requires more than good algorithms.
Michael Ingrisch, Clinical Data Science Professor at LMU and MCML PI, shares how his team took a practical approach: identifying a key diagnostic challenge in PET CT imaging and inviting the broader AI community to help solve it.
«Only if we understand both fields, AI and radiology, we can identify and map strategies to solve problems that actually need solving.»
Michael Ingrisch
MCML PI
Through an open machine learning competition, participants used real clinical data to train models for tumor segmentation. The results were tested on unseen data, with the winning solution demonstrating not just technical skill — but clinical relevance.
Ingrisch highlights the importance of interdisciplinary collaboration: without it, even the best models risk solving the wrong problems. His team is working to ensure the next generation of AI tools is not only cutting-edge — but aligned with the real needs of clinicians and patients.
This video is part of our MCML spotlight series on researchers driving AI forward through real-world impact.
©MCML
The film was produced and edited by Nicole Huminski and Nikolai Huber.
#blog #research #ingrisch
Related
20.11.2025
Zigzag Your Way to Faster, Smarter AI Image Generation
ZigMa, introduced by Björn Ommer’s group at ECCV 24, improves high-res AI image and video generation with fast, memory-efficient zigzag scanning.
13.11.2025
Anne-Laure Boulesteix Among the World’s Most Cited Researchers
MCML PI Anne‑Laure Boulesteix named Highly Cited Researcher 2025 for cross-field work, among 17 LMU scholars recognized globally.
13.11.2025
Björn Ommer Featured in Frankfurter Rundschau
Björn Ommer highlights how Google’s new AI search mode impacts publishers, content visibility, and the diversity of online information.
13.11.2025
Fabian Theis Among the World’s Most Cited Researchers
Fabian Theis is named a Highly Cited Researcher 2025 for his work in mathematical modeling of biological systems.