24.01.2025
©Astrid Eckert / TUM
How to Analyze Millions of Individual Cells
TUM News
Researchers from the Technical University of Munich (TUM) and Helmholtz Munich have tested self-supervised learning as a promising approach for analysing over 20 million individual cells. MCML PI Fabian Theis holds the Chair of Mathematical Modelling of Biological Systems at TUM. Together with his team, he has investigated whether self-supervised learning is better suited to analysing large amounts of data than other methods.
Given the enormous amounts of data generated by advances in single-cell technology, it is important to interpret them efficiently in order to recognise differences between healthy cells and those with diseases such as lung cancer or COVID-19. Self-supervised learning does not require pre-classified data and enables the robust processing of large amounts of data.
The study shows that this method improves performance, especially on transfer tasks and zero-shot predictions. The researchers compare masked learning and contrastive learning and find that masked learning is better suited for large datasets. The results could lead to the development of virtual cells that map the diversity of cells in different datasets and are useful for analysing cell changes in diseases.
Related
13.11.2025
Anne-Laure Boulesteix Among the World’s Most Cited Researchers
MCML PI Anne‑Laure Boulesteix named Highly Cited Researcher 2025 for cross-field work, among 17 LMU scholars recognized globally.
13.11.2025
Björn Ommer Featured in Frankfurter Rundschau
Björn Ommer highlights how Google’s new AI search mode impacts publishers, content visibility, and the diversity of online information.
13.11.2025
Fabian Theis Among the World’s Most Cited Researchers
Fabian Theis is named a Highly Cited Researcher 2025 for his work in mathematical modeling of biological systems.
13.11.2025
Explaining AI Decisions: Shapley Values Enable Smart Exosuits
AI meets wearable robotics: MCML and Harvard researchers make exosuits smarter and safer with explainable optimization, presented at ECML-PKDD 2025.