Home  | News

24.01.2025

Teaser image to How to analyze millions of individual cells

How to Analyze Millions of Individual Cells

TUM News

Researchers from the Technical University of Munich (TUM) and Helmholtz Munich have tested self-supervised learning as a promising approach for analysing over 20 million individual cells. MCML PI Fabian Theis holds the Chair of Mathematical Modelling of Biological Systems at TUM. Together with his team, he has investigated whether self-supervised learning is better suited to analysing large amounts of data than other methods.

Given the enormous amounts of data generated by advances in single-cell technology, it is important to interpret them efficiently in order to recognise differences between healthy cells and those with diseases such as lung cancer or COVID-19. Self-supervised learning does not require pre-classified data and enables the robust processing of large amounts of data.

The study shows that this method improves performance, especially on transfer tasks and zero-shot predictions. The researchers compare masked learning and contrastive learning and find that masked learning is better suited for large datasets. The results could lead to the development of virtual cells that map the diversity of cells in different datasets and are useful for analysing cell changes in diseases.

#research #theis
Subscribe to RSS News feed

Related

Link to From Global to Regional Explanations: Understanding Models More Locally

22.01.2026

From Global to Regional Explanations: Understanding Models More Locally

JMLR research shows how subgroup-specific explanations reveal hidden patterns that global model explanations often miss.

Link to MCML PI Matthias Nießner Featured in WirtschaftsWoche on Spaitial AI

20.01.2026

MCML PI Matthias Nießner Featured in WirtschaftsWoche on Spaitial AI

MCML PI Matthias Nießner featured in WirtschaftsWoche for Spaitial AI, creating realistic 3D models of rooms and interiors in seconds.

Link to MCML at AAAI 2026

19.01.2026

MCML at AAAI 2026

MCML researchers are represented with 11 papers at AAAI 2026 (8 Main, and 3 Workshops).

Link to MCML PI Frauke Kreuter Featured on ARD alpha on AI

19.01.2026

MCML PI Frauke Kreuter Featured on ARD Alpha on AI

MCML PI Frauke Kreuter featured on ARD alpha discussing AI in daily life, workplace applications, and responsible, future-ready use.

Link to Blind Matching – Aligning Images and Text Without Training or Labels

15.01.2026

Blind Matching – Aligning Images and Text Without Training or Labels

CVPR 2025 research from Daniel Cremers’ group shows how images and text can be aligned without training data, labels, or paired examples.

Back to Top